1,240
Views
63
CrossRef citations to date
0
Altmetric
Environmental Sciences

Impacts of Climate Change and Urban Development on Water Resources in the Tualatin River Basin, Oregon

&
Pages 249-271 | Received 01 Jun 2009, Accepted 01 Mar 2010, Published online: 12 Feb 2011
 

Abstract

We investigated the relative importance of future climate change and land use change in determining the quantity and quality of freshwater resources in northwestern Oregon's Tualatin River Basin using the U.S. Environmental Protection Agency's Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) modeling system. Models were calibrated and validated using historic flow and water quality data between 1990 and 2006. The goodness of fit for the calibrated models was high, with coefficients of determination ranging from 0.72 to 0.93 in the calibration period. The calibrated models were run under a range of eight statistically downscaled climate change, two regional land use change, and four combined scenarios. Results included average increases in winter flows of 10 percent, decreases in summer flows of 37 percent, and increases in fifth-percentile flows of up to 80 percent as a result of climate change in the Tualatin River Basin. For land use change, the results included an increase in annual flows of 21 percent for the development-oriented scenario and a decrease of 16 percent for the conservation-oriented scenario. For combined scenarios of high climate change and high urban development, there is a projected increase in winter flows of up to 71 percent and decrease in summer flows of up to 48 percent. Climate change scenarios were more significant than urban development scenarios in determining basin hydrological response. The results are relevant to regional planners interested in the long-term response of water resources to climate change and land use change at the basin scale.

Investigamos la importancia relativa que tienen el cambio climático futuro y el cambio del uso del suelo para determinar la cantidad y calidad de los recursos de agua dulce en la Cuenca del Río Tualatin, en Oregón, utilizando el sistema de modelaje BASINS de la Agencia de Protección Ambiental de EE.UU. Los modelos se calibraron y validaron utilizando datos de flujo histórico y calidad del agua entre 1990 y 2006. La bondad de ajuste para los modelos calibrados fue alta, con coeficientes de determinación de 0.72 a 0.93 en el período de calibración. Se corrieron los modelos calibrados en un ámbito de ocho de cambio climático degradado estadísticamente, dos para cambio regional de uso del suelo y cuatro escenarios combinados. Los resultados incluyeron incrementos promedios en flujos de invierno del 10 por ciento, decrecimientos en los flujos de verano de 37 por ciento, e incrementos en los flujos del quinto percentil de hasta el 80 por ciento, como un resultado del cambio climático en la Cuenca del Río Tualatin. Para el cambio del uso del suelo, los resultados incluyeron un incremento en los flujos anuales del 21 por ciento para el escenario orientado hacia el desarrollo, y un decrecimiento del 16 por ciento para el escenario de orientación conservadora. Para escenarios combinados de alta intensidad de cambio climático y alto desarrollo urbano, hay un incremento proyectado en los flujos de invierno de hasta el 71 por ciento y decrecimiento en los flujos de verano de hasta el 48 por ciento. Los escenarios de cambio climático fueron más significativos que los escenarios de desarrollo urbano para determinar la respuesta hidrológica de la cuenca. Los resultados son relevantes para planificadores regionales interesados en la respuesta a largo plazo de los recursos hídricos al cambio climático y el cambio de uso del suelo a escala de cuencas.

Acknowledgments

This research was partially supported by a grant (code# 1-9-3) from the Sustainable Water Resources Research Center of the 21st Century Frontier Research Program in Korea, a sustainability grant from the James F. and Marion L. Miller Foundation, and a Faculty Enhancement Grant at Portland State University. We appreciate Eric Salathe at the University of Washington for providing downscaled climate change simulation data, Il-Won Jung at Portland State University for extracting downscaled data for hydrologic model simulation, and Jan Miller of Clean Water Services for providing flow and water quality data. The preliminary findings of this research were presented at the annual meeting of the Association of American Geographers in Las Vegas in 2009. We greatly appreciate comments from an anonymous reviewer and editor Richard Aspinall, who helped improved the quality of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 312.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.