120
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study of the Detonation Structure in Rich Acetylene-Air Mixtures

ORCID Icon & ORCID Icon
Pages 1662-1684 | Received 14 May 2022, Accepted 09 Sep 2022, Published online: 15 Sep 2022
 

ABSTRACT

A numerical simulation of the detonation propagation process of acetylene-air under fuel-rich conditions is carried out using a reduced acetylene reaction model. The loose coupling method is used to solve the conservation equations with source terms. The flow is solved explicitly using a gas kinetic scheme, and the chemical reactions are solved implicitly. The numerical results show that the oxidation reaction is the chain initiation in the self-sustained detonation propagation process in rich acetylene. The self-decomposition reaction of acetylene provides the energy to maintain the coupling between the shock wave and the chemical reaction zone. The results show that the initial induced reaction is still an oxidation reaction due to the low activation energy of the oxidation reaction under the condition of low oxygen content. The intensity of the transverse wave is affected by the acetylene concentration. The post-detonation disturbance of temperature is mainly affected by the strength of the tail of transverse wave and the area of the unreacted pocket. With the increase of acetylene concentration, the self-decomposition process of acetylene increases the intensity of the transverse wave tail and improves the degree of temperature homogenization. This creates a formation-fragmentation-regeneration cycle of polycyclic aromatic hydrocarbons. This process changed the branching ratio of polycyclic aromatic hydrocarbons with different structures and delayed the formation of polycyclic aromatic hydrocarbons. When the acetylene concentration is low, the region where the dominant temperature after detonation is 1500 ~ 2500 K provides a favorable environment for the growth of polycyclic aromatic hydrocarbons.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed online at https://doi.org/10.1080/00102202.2022.2124371

Additional information

Funding

This research is financially supported by the National Natural Science Foundation of China [No. 50776045, 51576098].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.