124
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical Study of the Detonation Structure in Rich Acetylene-Air Mixtures

ORCID Icon & ORCID Icon
Pages 1662-1684 | Received 14 May 2022, Accepted 09 Sep 2022, Published online: 15 Sep 2022

References

  • Ago, A., N. Tsuboi, E. Dzieminska, and A. K. Hayashi. 2019. Two-Dimensional numerical simulation of detonation transition with multi-step reaction model: effects of obstacle height. Combust. Sci. Technol. 191:659–75. doi:10.1080/00102202.2018.1498849.
  • Alekseev, V. A., N. Bystrov, A. Emelianov, A. Eremin, P. Yatsenko, and A. A. Konnov. 2022. High-Temperature oxidation of acetylene by N2O at high Ar dilution conditions and in laminar premixed C2H2 + O2 + N2 flames. Combust. Flame. 238:111924. doi:10.1016/j.combustflame.2021.111924.
  • Batraev, I. S., A. A. Vasil’Ev, V. Y. Ul’Yanitskii, A. A. Shtertser, and D. K. Rybin. 2018. Investigation of gas detonation in over-rich mixtures of hydrocarbons with oxygen. Combust. Explos. Shock Waves 54:207–15. doi:10.1134/S0010508218020107.
  • Burke, M. P., M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein. 2012. Comprehensive H2/O2 kinetic model for high-pressure combustion. Int. J. Chem. Kinet. 44:444–74. doi:10.1002/kin.20603.
  • Chapman, S., and T. G. Cowling. 1990. The mathematical theory of non-uniform gases. Third ed. New York, USA: Cambridge University Press.
  • Deng, X., B. Xie, H. Teng, and F. Xiao. 2019. High resolution multi-moment finite volume method for supersonic combustion on unstructured grids. Appl. Math. Model. 66:404–23. doi:10.1016/j.apm.2018.08.010.
  • Emelianov, A., A. Eremin, H. Jander, and H. G. Wagner. 2011. Carbon condensation wave in C3O2 and C2H2 initiated by a shock wave. Proc. Combust. Inst. 33:525–32.
  • Fang, Y., Y. Zhang, X. Deng, and H. Teng. 2019. Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures. Phys. Fluids 31:026108.
  • Gimenez-Lopez, J., C. T. Rasmussen, H. Hashemi, M. U. Alzueta, Y. Gao, P. Marshall, C. F. Goldsmith, and P. Glarborg. 2016. Experimental and kinetic modeling study of C2H2 oxidation at high pressure. Int. J. Chem. Kinet. 48:724–38.
  • Glarborg, P., J. A. Miller, B. Ruscic, and S. J. Klippenstein. 2018. Modeling nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 67:31–68.
  • Guilly, V., B. Khasainov, H.-N. Presles, and D. Desbordes. 2006. Simulation numérique des détonations à double structure cellulaire. C. R. Méc. 334:679–85.
  • Kathrotia, T., P. Oßwald, C. Naumann, S. Richter, and M. Köhler. 2021. Combustion kinetics of alternative jet fuels, Part-II: Reaction model for fuel surrogate. Fuel 302:120736.
  • Kistiakowsky, G. B., H. T. Knight, and M. E. Malin. 1952. Gaseous detonations. IV. The acetylene‐oxygen mixtures. J. Chem. Phys. 20:884–87.
  • Lei, T., W. Guo, Q. Liu, H. Jiao, D.-B. Cao, B. Teng, Y.-W. Li, X. Liu, and X.-D. Wen. 2019. Mechanism of graphene formation via detonation synthesis: A DFTB nanoreactor approach. J Chem Theory Comput. 15:3654–65.
  • Lian, Y. S., and K. Xu. 2000. A gas-kinetic scheme for multimaterial flows and its application in chemical reactions. J. Comput. Phys. 163:349–75.
  • Liu, M., T.-C. Chu, A. Jocher, M. C. Smith, I. Lengyel, and W. H. Green. 2021. Predicting polycyclic aromatic hydrocarbon formation with an automatically generated mechanism for acetylene pyrolysis. Int. J. Chem. Kinet. 53:27–42.
  • Mahmoudi, Y., and K. Mazaheri. 2015. High resolution numerical simulation of triple point collision and origin of unburned gas pockets in turbulent detonations. Acta Astronaut. 115:40–51.
  • Martin, J. W., M. Salamanca, and M. Kraft. 2022. Soot inception: Carbonaceous nanoparticle formation in flames. Prog. Energy Combust. Sci. 88:100956.
  • Mikhalchenko, E. V., and V. F. Nikitin. 2020. Rotating detonation engine fed by acetylene-oxygen combustible mixture modeling. AIP Conf. Proc. 2304:020022 (020025 pp.
  • Norinaga, K., V. M. Janardhanan, and O. Deutschmann. 2008. Detailed chemical kinetic modeling of pyrolysis of ethylene, acetylene, and propylene at 1073–1373 K with a plug-flow reactor model. Int. J. Chem. Kinet. 40:199–208.
  • Oran, E. S., T. R. Young, J. P. Boris, J. M. Picone, and D. H. Edwards. 1982. A study of detonation structure: The formation of unreacted gas pockets. Symp. (Int) Combust. 19:573–82.
  • Pan, L., J. Cheng, S. Wang, and K. Xu. 2017. A two-stage fourth-order gas-kinetic scheme for compressible multicomponent flows. Commun. Comput. Phys. 22:1123–49.
  • Poludnenko, A. Y., J. Chambers, K. Ahmed, V. N. Gamezo, and B. D. Taylor. 2019. A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type Ia supernovae. Science 366:eaau7365.
  • Premnath, N., K. Mohanrasu, R. Guru Raj Rao, G. H. Dinesh, G. S. Prakash, V. Ananthi, K. Ponnuchamy, G. Muthusamy, and A. Arun. 2021. A crucial review on polycyclic aromatic hydrocarbons - environmental occurrence and strategies for microbial degradation. Chemosphere 280:130608.
  • Reizer, E., B. Viskolcz, and B. Fiser. 2022. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: A mini-review. Chemosphere 291:132793.
  • Shen, X., X. Yang, J. Santner, J. Sun, and Y. Ju. 2015. Experimental and kinetic studies of acetylene flames at elevated pressures. Proc. Combust. Inst. 35:721–28.
  • Shtertser, A. A., D. K. Rybin, V. Y. Ulianitsky, W. Park, M. Datekyu, T. Wada, and H. Kato. 2020. Characterization of nanoscale detonation carbon produced in a pulse gas-detonation device. Diam. Relat. Mater. 101:107553.
  • Smirnov, N. N., V. B. Betelin, V. F. Nikitin, Y. G. Phylippov, and J. Koo. 2014. Detonation engine fed by acetylene–oxygen mixture. Acta Astronaut. 104:134–46.
  • Tao, H., H.-Y. Wang, W. Ren, and K. C. Lin. 2019. Kinetic mechanism for modeling the temperature effect on PAH formation in pyrolysis of acetylene. Fuel 255:115796.
  • van Albada, G. D., B. van Leer, and W. W. Roberts. 1997. A comparative study of computational methods in cosmic gas dynamics. In Upwind and high-resolution schemes, ed. M. Y. Hussaini, B. van Leer, and J. Van Rosendale, pp. 95–103. Berlin, Heidelberg: Springer.
  • van Leer, B. 1979. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32:101–36.
  • Xiao, H., and E. S. Oran. 2019. Shock focusing and detonation initiation at a flame front. Combust. Flame. 203:397–406.
  • Yang, L. M., C. Shu, Z. Chen, Y. Y. Liu, J. Wu, and X. Shen. 2021. Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows. Phys. Rev. E 104:015305.
  • Yi, T. H., F. K. Lu, D. R. Wilson, and G. Emanuel. 2017. Numerical study of detonation wave propagation in a confined supersonic flow. Shock Waves. 27:395–408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.