127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unilateral Blow-Off and Periodic Smoldering Holes in Upward Flame Spread Over Thin Charring Material

, , , , &
Received 04 Sep 2022, Accepted 23 Nov 2022, Published online: 05 Dec 2022
 

ABSTRACT

In this study, upward flame spread over thin charring material under varied ambient pressures and oxygen concentrations diluted with different inert gases was investigated. After symmetric ignition, a small systematic disturbance at the flame base region triggers asymmetric two-sided flames, while the flame tips remain aligned. Afterward, one branch of flame dwells and speeds up in a cycle, associated with periodic smoldering holes, mainly ascribed to the secondary pyrolysis and surface oxidative degradation (smoldering) of the remaining char, while the other branch of flame extinguishes eventually, primarily attributed to the self-induced buoyant blow-off at a low critical Damköhler number associated with finite-rate kinetics. The temperature distribution over the sample surface is obtained by infrared thermal imagers, and six stages of the whole pyrolysis process are roughly divided, which gives a better perspective on the underlying mechanism of these unique combustion behaviors. With the burnout (end) of the primary or secondary pyrolysis processes, the local fuel/oxidant mixture ratio at the flame base region approaches that of the inflammability limit (neutral stable point) where the near-limit flames are extremely sensitive to the environmental disturbances, and thus the flame base instability appears. With the increase of the oxygen concentration, the pressure range of the existence of the unique combustion behaviors narrows down due to intensified chemical reactions and thus the stability of the flame base. Furthermore, compared with the environments diluted in N2, the unique combustion behaviors are more conspicuous in that of CO2 (radiative intervening medium) due to larger molecular weight and lower Lewis number. This investigation into the upward flame propagation will enrich the combustion science at transition regimes such as the fire scenarios after the application of the carbon dioxide fire extinguisher.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the National Key Research and Development Program of China (No.2020YFC1522800), the National Natural Science Foundation of China (No. 51636008, and 52076201), the Key Research Program of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC029), Fundamental Research Funds for the Central Universities (No. WK2320000051)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,493.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.