127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unilateral Blow-Off and Periodic Smoldering Holes in Upward Flame Spread Over Thin Charring Material

, , , , &
Received 04 Sep 2022, Accepted 23 Nov 2022, Published online: 05 Dec 2022

References

  • Anca-Couce, A., N. Zobel, A. Berger, and F. Behrendt. 2012. Smouldering of pine wood: Kinetics and reaction heats. Combust. Flame 159 (4):1708–19. doi:10.1016/j.combustflame.2011.11.015.
  • Annamalai, K., and M. Sibulkin. 1979. Flame spread over combustible surfaces for laminar flow systems Part I: Excess fuel and heat flux. Combust. Sci. Technol. 19 (5–6):167–83. doi:10.1080/00102207908946878.
  • Chen, J., L. Pan, J. Xie, G. Wu, H. Ren, and Y. Wang. 2014. Pyrolysis volatiles and environmental impacts of printing paper in air. Cellul 21 (4):2871–78. doi:10.1007/s10570-014-0268-5.
  • Chen, C. H., and J. S. T’Ien. 1986. Diffusion flame stabilization at the leading edge of a fuel plate. Combust. Sci. Technol. 50 (4–6):283–306. doi:10.1080/00102208608923938.
  • Fang, J., X. He, K. Li, J. Wang, and Y. Zhang. 2018. Transition condition and control mechanism of subatmospheric flame spread rate over horizontal thin paper sample. Combust. Flame 188:90–93. doi:10.1016/j.combustflame.2017.09.010.
  • Fernandez-Pello, A. C., and T. Hirano. 1983. Controlling mechanisms of flame spread. Combust. Sci. Technol. 32 (1–4):1–31. doi:10.1080/00102208308923650.
  • Glassman, I., R. A. Yetter, and N. G. Glumac. 2015. Combustion. Amsterdam: Elsevier.
  • Gollner, M. J., C. H. Miller, W. Tang, and A. V. Singh. 2017. The effect of flow and geometry on concurrent flame spread. Fire Saf. J. 91:68–78. doi:10.1016/j.firesaf.2017.05.007.
  • Gollner, M. J., F. A. Williams, and A. S. Rangwala. 2011. Upward flame spread over corrugated cardboard. Combust. Flame 158 (7):1404–12. doi:10.1016/j.combustflame.2010.12.005.
  • Gupta, A. K., and P. Muller. 1999. Pyrolysis of paper and cardboard in inert and oxidative environments. J. Propuls. Power 15 (2):187–94. doi:10.2514/2.5441.
  • He, X., J. Fang, Y. Zhang, and L. Zhao. 2022. Experimental study of flame spread transition from chemistry to heat transfer controlled regime at sub-atmospheric pressure: The effect of sample width. Process Saf. Environ. Prot. 158:221–30. doi:10.1016/j.psep.2021.12.008.
  • He, X., J. Wang, and J. Fang. 2021. Flammability limits and near-limit chemistry controlled flame spread over thermally thin paper under sub-atmospheric pressure. Fire Saf. J. 120:103042. doi:10.1016/j.firesaf.2020.103042.
  • Honda, L. K., and P. D. Ronney. 2000. Mechanisms of concurrent-flow flame spread over solid fuel beds. Proc. Combust. Inst 28 (2):2793–801. doi:10.1016/S0082-0784(00)80701-8.
  • Hsu, S. -Y., and J. S. T’Ien. 2009. Pressure extinction limits of non-premixed flames. Combust. Theory Model 13 (5):885–900. doi:10.1080/13647830903225284.
  • Huang, X., and J. Gao. 2021. A review of near-limit opposed fire spread. Fire Saf. J. 120:103141. doi:10.1016/j.firesaf.2020.103141.
  • Johnston, M. C., J. S. T’Ien, D. E. Muff, X. Zhao, S. L. Olson, and P. V. Ferkul. 2015. Self induced buoyant blow off in upward flame spread on thin solid fuels. Fire Saf. J. 71:279–86. doi:10.1016/j.firesaf.2014.11.007.
  • Joshi, A. K., A. Kumar, V. Raghavan, S. A. Trubachev, A. G. Shmakov, O. P. Korobeinichev, and P. Kumar. 2021. Numerical and experimental study of downward flame spread along multiple parallel fuel sheets. Fire Saf. J. 125:103414. doi:10.1016/j.firesaf.2021.103414.
  • Kleinhenz, J., P. Ferkul, R. Pettegrew, K. R. Sacksteder, and J. S. T’Ien. 2005. One-sided flame spread phenomena of a thermally thin composite cotton/fiberglass fabric. Fire Mater. 29 (1):27–37. doi:10.1002/fam.870.
  • Kleinhenz, J. E., and J. S. T’Ien. 2007. Combustion of nomex® III fabric in potential space habitat atmospheres: Cyclic flame spread phenomenon. Combust. Sci. Technol. 179 (10):2153–69. doi:10.1080/00102200701386172.
  • Leone, C., S. Genna, F. Bertocchi, M. Giordano, and A. Martone. 2021. A procedure to measure the emissivity of ultra-thin graphene based film in long wavelength infrared (LWIR) spectrum region. Opt. Laser Technol. 138: 106910. doi:10.1016/j.optlastec.2020.106910.
  • Li, C., and Y. T. T. Liao. 2018. Numerical investigation of flame splitting phenomenon in upward flame spread over solids with a two-stage pyrolysis model. Combust. Sci. Technol. 190 (12):2082–96. doi:10.1080/00102202.2018.1489380.
  • Li, C., Y. T. T. Liao, J. S. T’Ien, D. L. Urban, P. Ferkul, S. Olson, G. A. Ruff, and J. Easton. 2019. Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity – Model versus experiment. Proc. Combust. Inst 37 (3):4163–71. doi:10.1016/j.proci.2018.05.168.
  • Martin, P. E., and E. F. Barker. 1932. The infrared absorption spectrum of carbon dioxide. Phys. Rev 41 (3):219.
  • Ohlemiller, T. J. 1985. Modeling of smoldering combustion propagation. Prog. Energy Combust. Sci. 11 (4):277–310. doi:10.1016/0360-1285(85)90004-8.
  • Olson, S. L., H. R. Baum, and T. Kashiwagi. 1998. Finger-like smoldering over thin cellulosic sheets in microgravity. Proc. Combust. Inst 27 (2):2525–33. doi:10.1016/S0082-0784(98)80104-5.
  • Pagni, P. J. 1981. Diffusion flame analyses. Fire Saf. J. 3 (4):273–85. doi:10.1016/0379-7112(81)90049-7.
  • Pagni, P. J., and T. M. Shih. 1977. Excess pyrolyzate. Proc. Combust. Inst 16 (1):1329–43. doi:10.1016/S0082-0784(77)80419-0.
  • Pigeat, P., D. Rouxel, and B. Weber. 1998. Calculation of thermal emissivity for thin films by a direct method. Phys. Rev. B 57 (15):9293. doi:10.1103/PhysRevB.57.9293.
  • Sakuma, H., S. Munakata, and S. Sugawara. 1981. Volatile products of cellulose pyrolysis. Agric. Biol. Chem. 45 (2):443–51. doi:10.1080/00021369.1981.10864521.
  • Spalding, D. B. 1957. A theory of inflammability limits and flame-quenching. Proc. Roy. Soc. Lon 240 (1220):83–100.
  • T’Ien, J. S. 1973. The effects of perturbations on the flammability limits. Combust. Sci. Technol. 7 (4):185–88. doi:10.1080/00102207308952357.
  • Torero, J. L., T. Vietoris, G. Legros, and P. Joulain. 2002. Estimation of a total mass transfer number from the standoff distance of a spreading flame. Combust. Sci. Technol. 174 (11–12):187–203. doi:10.1080/713712953.
  • Urban, D. L., P. Ferkul, S. Olson, G. A. Ruff, J. Easton, J. S. T’Ien, Y. T. T. Liao, C. Li, C. Fernandez-Pello, J. L. Torero, et al. 2019. Flame spread: Effects of microgravity and scale. Combust. Flame 199:168–82. doi:10.1016/j.combustflame.2018.10.012.
  • Wang, W., L. Zhao, J. Fang, and Y. Zhang. 2022. Upward flame spread over two parallel paper sheets under reduced ambient pressure and elevated oxygen concentration. Combust Sci. Technol 1–19.
  • Williams, F. A. 1977. Mechanisms of fire spread. Proc. Combust. Inst 16 (1):1281–94. doi:10.1016/S0082-0784(77)80415-3.
  • Yang, C. T., and J. S. T’Ien. 1998. Numerical simulation of combustion and extinction of a solid cylinder in low-speed cross flow. J. Heat Transfer 120 (4):1055–63. doi:10.1115/1.2825890.
  • Zhang, Y., P. D. Ronney, E. V. Roegner, and J. B. Greenberg. 1992. Lewis number effects on flame spreading over thin solid fuels. Combust. Flame 90 (1):71–83. doi:10.1016/0010-2180(92)90136-D.
  • Zhao, L., J. Fang, S. Tao, J. Wang, and Y. Zhang. 2021. Effects of ambient parameters and sample width on upward flame spread over thermally thin solids. Fire Technol. 57 (1):145–61. doi:10.1007/s10694-020-00987-x.
  • Zhao, X., Y. T. T. Liao, M. C. Johnston, S. James, P. V. Ferkul, and S. L. Olson. 2017. Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity. Proc. Combust. Inst 36 (2):2971–78. doi:10.1016/j.proci.2016.06.028.
  • Zhao, X., and J. S. T’Ien. 2015. A three-dimensional transient model for flame growth and extinction in concurrent flows. Combust. Flame 162 (5):1829–39. doi:10.1016/j.combustflame.2014.12.003.
  • Zik, O., and E. Moses. 1998a. Fingering instability in solid fuel combustion: The characteristic scales of the developed state. Proc. Combust. Inst 27 (2):2815–20. doi:10.1016/S0082-0784(98)80139-2.
  • Zik, O., and E. Moses. 1999. Fingering instability in combustion: An extended view. Phys. Rev. E 60 (1):518. doi:10.1103/PhysRevE.60.518.
  • Zik, O., Z. Olami, and E. Moses. 1998b. Fingering instability in combustion. Phys. Rev. Lett. 81 (18):3868. doi:10.1103/PhysRevLett.81.3868.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.