123
Views
7
CrossRef citations to date
0
Altmetric
Section B

Weighted least-squares finite element methods for the linearized Navier–Stokes equations

Pages 1964-1985 | Received 28 Apr 2013, Accepted 05 Nov 2013, Published online: 26 Mar 2014
 

Abstract

We implemented weighted least-squares finite element methods for the linearized Navier-Stokes equations based on the velocity–pressure–stress and the velocity–vorticity–pressure formulations. The least-squares functionals involve the L2-norms of the residuals of each equation multiplied by the appropriate weighting functions. The weights included a mass conservation constant, a mesh-dependent weight, a nonlinear weighting function, and Reynolds numbers. A feature of this approach is that the linearized system creates a symmetric and positive-definite linear algebra problem at each Newton iteration. We can prove that least-squares approximations converge with the linearized version solutions of the Navier–Stokes equations at the optimal convergence rate. Model problems considered in this study were the flow past a planar channel and 4-to-1 contraction problems. We presented approximate solutions of the Navier–Stokes problems by solving a sequence of the linearized Navier–Stokes problems arising from Newton iterations, revealing the convergence rates of the proposed schemes, and investigated Reynolds number effects.

2010 AMS Subject Classifications:

Funding

This work was supported in part by the National Science Council of Taiwan under contract no. 100-2115-M-160-001.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.