124
Views
7
CrossRef citations to date
0
Altmetric
Section B

Weighted least-squares finite element methods for the linearized Navier–Stokes equations

Pages 1964-1985 | Received 28 Apr 2013, Accepted 05 Nov 2013, Published online: 26 Mar 2014

References

  • M. Alves, P. Oliveira, and F. Pinho, Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions, J. Non-Newtonian Fluid Mech. 110 (2003), pp. 45–75. doi: 10.1016/S0377-0257(02)00191-X
  • J. Azaiez, R. Guénette, and A. Ait-Kadi, Numerical simulation of viscoelastic flows through a planar contraction, J. Non-Newton. Fluid Mech. 62 (1996), pp. 253–277. doi: 10.1016/0377-0257(95)01406-3
  • P.B. Bochev, Analysis of least-squares finite element methods for the Navier–Stokes equations, SIAM J. Numer. Anal. 34 (1997), pp. 1817–1844. doi: 10.1137/S0036142994276001
  • P.B. Bochev, Z. Cai, T.A. Manteuffel, and S.F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier–Stokes equations, Part I, SIAM J. Numer. Anal. 35 (1998), pp. 990–1009. doi: 10.1137/S0036142996313592
  • P.B. Bochev and M.D. Gunzburger, Least-squares finite element methods for the velocity–pressure–stress formulation of the Stokes equatsions, Comput Methods Appl. Mech. Eng. 126 (1995), pp. 267–287. doi: 10.1016/0045-7825(95)00826-M
  • P.B. Bochev and M.D. Gunzburger, Finite element methods of least-squares type, SIAM, Rev. 40 (1998), pp. 789–837. doi: 10.1137/S0036144597321156
  • P.B. Bochev and M.D. Gunzburger, Least-Squares Finite Element Methods, Springer, New York, 2009.
  • P. Bolton and R.W. Thatcher, A least-squares finite element method for the Navier–Stokes equations, J. Comput. Phys. 213 (2006), pp. 174–183. doi: 10.1016/j.jcp.2005.08.015
  • A. Bose and G.F. Carey, Least-squares p-r finite element methods for incompressible non-Newtonian flows, Comput. Methods Appl. Mech. Eng. 180 (1999), pp. 431–458. doi: 10.1016/S0045-7825(99)00177-2
  • Z. Cai, T.A. Manteufeel, and S.F. Mccormick, First-order system least-squares for velocity–vorticity–pressure form of the Stokes equations, with application to linear elastically, Electron. Trans. Num. Anal. 3 (1995), pp. 150–159.
  • Z. Cai and C.R. Westphal, An adaptive mixed least-squares finite element method for viscoelastic fluids of Oldroyd type, J. Non-Newton. Fluid Mech. 159 (2009), pp. 72–80.
  • C.L. Chang and B.N. Jiang, An error analysis of least-squares finite element method of velocity–pressure–vorticity formulation for Stokes problem, Comput. Methods Appl. Mech. Eng. 84 (1990), pp. 247–255. doi: 10.1016/0045-7825(90)90079-2
  • C.L. Chang and S.Y. Yang, Analysis of the L2 least-squares finite element method for the velocity–vorticity–pressure Stokes equations with velocity boundary conditions, Appl. Math. Comput. 130 (2002), pp. 121–144. doi: 10.1016/S0096-3003(01)00086-8
  • T.F. Chen, C.L. Cox, H.C. Lee, and K.L. Tung, Least-squares finite elements for generalized newtonian and viscoelastic flows, Appl. Num. Math. 60 (2010), pp. 1024–1040. doi: 10.1016/j.apnum.2010.07.006
  • J.M. Deang and M. Gunzburger, Issues related to least-squares finite element methods for the Stoke equations, SIAM J. Sci. Comput. 20 (1998), pp. 878–906. doi: 10.1137/S1064827595294526
  • A. Fortin, R. Guénette, and R. Pierre, On the discrete EVSS method, Comput. Methods Appl. Mech. Eng. 189 (2000), pp. 121–139. doi: 10.1016/S0045-7825(99)00292-3
  • B.N. Jiang, The Least-Squares Finite Element Method, Springer, Berlin, 1998.
  • B.N. Jiang and C.L. Chang, Least-squares solution of incompressible Navier–Stokes equations with the p-version of finite elements, Comput. Mech. 15 (1994), pp. 129–136.
  • J.M. Kim, C. Kim, J.H. Kim, C. Chunga, K.H. Ahna, and S.J. Lee, High-resolution finite element simulation of 4:1 planar contraction flow of viscoelastic fluid, J. Non-Newton. Fluid Mech. 129 (2005), pp. 23–37. doi: 10.1016/j.jnnfm.2005.04.007
  • S.D. Kim and B.C. Shin, H−1 least-squares method for the velocity–pressure–stress formulation of Stokes equation, Appl. Num. Math. 40 (2002), pp. 451–465. doi: 10.1016/S0168-9274(01)00095-2
  • H.C. Lee, Adaptive least-squares finite elements methods for viscoelastic flow problems, Ph.D. diss., Department of Mathematics, National Chung Cheng University, Taiwan, 2008.
  • H.C. Lee, A nonlinear weighted least-squares finite element method for the Oldroyd-B viscoelastic flow, Appl. Math. Comput. 219 (2012), pp. 421–434.
  • H.C. Lee and T.F. Chen, A nonlinear weighted least-squares finite elements method for Stokes equations, Comput. Math. Appl. 59 (2010), pp. 215–224. doi: 10.1016/j.camwa.2009.08.033
  • H.C. Lee and T.F. Chen, A nonlinear weighted least-squares finite elements method for the velocity–vorticity–pressure formulation of the Stokes equations, Appl. Math. Comput. 2011 (submitted for publication).
  • J.P. Pontaza and J.N. Reddy, Spectral/hp least-squares finite element formulation for the Navier–Stokes equations, J. Comput. Phys. 190 (2003), pp. 523–549. doi: 10.1016/S0021-9991(03)00296-1
  • V. Prabhakar, J.P. Pontaza, and J.N. Reddy, A collocation penalty least-squares finite element formulation for incompressible flows, Comput. Methods Appl. Mech. Eng. 197 (2008), pp. 449–463. doi: 10.1016/j.cma.2007.06.013
  • J.N. Reddy and V.A. Padhye, A Penalty finite element model for axisymmetric flows of non-Newtonain fluids, Num. Methods Partial Differ. Equ. 4 (1988), pp. 33–56. doi: 10.1002/num.1690040104
  • C.C. Tsai and S.Y. Yang, On the velocity–vorticity–pressure least-squares finite element method for the stationary incompressible Oseen problem, J. Comp. Appl. Math. 182 (2005), pp. 211–232. doi: 10.1016/j.cam.2004.11.046
  • S.Y. Yang, Error analysis of a weighted least-squares finite element method for 2-D incompressible flows in velocity–stress–pressure formulation, Math. Methods Appl. Sci. 21 (1998), pp. 1637–1654. doi: 10.1002/(SICI)1099-1476(199812)21:18<1637::AID-MMA13>3.0.CO;2-M
  • F. Zinani and S. Frey, Galerkin least-squares multifield approximations for flows of inelastic non-Newtonian fluids, J. Fluids Eng. 130 (2008), pp. 081507-1–081507-14. doi: 10.1115/1.2956514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.