383
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

A curve extension design for coordinated path following control of unicycles along given convex loops

&
Pages 1729-1745 | Received 21 Dec 2010, Accepted 15 Sep 2011, Published online: 06 Oct 2011
 

Abstract

This article utilises a dynamic model of unicycles to address the convergence of vehicle formation about closed convex curves. A novel curve extension method, extending the target loop along the vector from the loop centre to the point on the loop, is proposed to construct a family of level curves and the existence of a loop function on a tubular-like neighbourhood is proved by referring to the tubular neighbourhood theorem. Path following control is derived based on the loop function which incorporated into the arc-length function to propose the solution to coordinated formation control. We show how backstepping technique, Lyapunov-based theory and graph theory can be combined together to construct the coordinated path following controller under the bidirectional commutation topology. It is proved that the designed cooperative control system is asymptotically stable if the graph is connected. The proposed method is effective for a skewed superellipse, which is a type of curve that includes circles, ellipses and rounded parallelograms.

Acknowledgements

This work was supported by the National Natural Science Foundation of China grants 60974041 and 60934006.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.