771
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Neuro-adaptive fixed-time non-singular fast terminal sliding mode control design for a class of under-actuated nonlinear systems

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1529-1542 | Received 17 Jun 2021, Accepted 01 Mar 2022, Published online: 30 Mar 2022
 

Abstract

This paper presents a fixed-time neuro-adaptive control design for a class of uncertain under-actuated nonlinear systems (UNS) using a non-singular fast terminal sliding mode control (TSMC) with a radial basis function (RBF)-based estimator to achieve the convergence and robustness against the uncertainties. The mathematical model of the considered class is reduced into an equivalent regular form. A fast TSMC is designed for the transformed form to improve the control performance and annihilate the associated singularity problem of the conventional TSMC. Lyapunov stability theory ensures the steering of the sliding manifold and system states in fixed time. RBF neural networks are adaptively estimate the nonlinear drift functions. The theoretical design, analysis, and simulations of cart-pendulum and quadcopter demonstrate the feasibility and benefits of the regular form transformation and the designed control design. Comparing the proposed synthesis with the standard literature presents the attractive nature of proposed method for such a class.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.