771
Views
15
CrossRef citations to date
0
Altmetric
Research Articles

Neuro-adaptive fixed-time non-singular fast terminal sliding mode control design for a class of under-actuated nonlinear systems

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1529-1542 | Received 17 Jun 2021, Accepted 01 Mar 2022, Published online: 30 Mar 2022

References

  • Bouabdallah, S., & Siegwart, R. (2005). Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In IEEE International Conference on Robotics and Automation (pp. 2247–2252). IEEE.
  • Chen, Y., Wang, C., Zeng, W., & Wu, Y. (2021). Horizontal nonlinear path following guidance law for a small UAV with parameter optimized by NMPC. IEEE Access, 9, 127102–127116. https://doi.org/10.1109/ACCESS.2021.3111101
  • Corradini, M. L., & Cristofaro, A. (2018). Nonsingular terminal sliding-mode control of nonlinear planar systems with global fixed-time stability guarantees. Automatica, 95(8), 561–565. https://doi.org/10.1016/j.automatica.2018.06.032
  • Din, S. U., Khan, Q., Rehman, F., & Akmeliawanti, R. (2017). A comparative experimental study of robust sliding mode control strategies for underactuated systems. IEEE Access, 5, 10068–10080. https://doi.org/10.1109/ACCESS.2017.2712261
  • Fantoni, I., & Lozano, R. (2002). Non-linear control for underactuated mechanical systems. Springer Science & Business Media.
  • Fessi, R., Bouallègue, S., Haggège, J., & Vaidyanathan, S. (2017). Terminal sliding mode controller design for a quadrotor unmanned aerial vehicle. In Applications of sliding mode control in science and engineering (pp. 81–98). Springer.
  • Ghommam, J., Mnif, F., Benali, A., & Derbel, N. (2006). Asymptotic backstepping stabilization of an underactuated surface vessel. IEEE Transactions on Control Systems Technology, 14(6), 1150–1157. https://doi.org/10.1109/TCST.2006.880220
  • Gruszka, A., Malisoff, M., & Mazenc, F. (2011). On tracking for the PVTOL model with bounded feedbacks. In American Control Conference (ACC), 2011 (pp. 1428–1433). IEEE.
  • Hou, Y., Zuo, Z., & Shi, Z. (2015). Fixed-time terminal sliding mode trajectory tracking control of quadrotor helicopter. In Proceedings of the 34th Chinese Control Conference (pp. 4361–4366). IEEE.
  • Huang, X., & Yan, Y. (2017). Saturated backstepping control of underactuated spacecraft hovering for formation flights. IEEE Transactions on Aerospace and Electronic Systems, 53(4), 1988–2000. https://doi.org/10.1109/TAES.2017.2679838
  • Huang, Y., & Jia, Y. (2017). Fixed-time consensus tracking control for second-order multi-agent systems with bounded input uncertainties via NFFTSM. IET Control Theory & Applications, 11(16), 2900–2909. https://doi.org/10.1049/cth2.v11.16
  • Ji, N., & Liu, J. (2021). Sliding mode control for underactuated system with input constraint based on RBF neural network and Hurwitz stability analysis. Asian Journal of Control. https://doi.org/10.1002/asjc.2692
  • Khan, Q., Akmeliawati, R., Bhatti, A. I., & Ashraf, M. (2017). Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach. ISA Transactions, 66(4), 241–248. https://doi.org/10.1016/j.isatra.2016.10.017
  • Li, B., Qin, K., Xiao, B., & Yang, Y. (2019). Finite-time extended state observer based fault tolerant output feedback control for attitude stabilization. ISA Transactions, 91(12), 11–20. https://doi.org/10.1016/j.isatra.2019.01.039
  • Li, T., & Zhao, H. (2017). Global finite-time adaptive control for uncalibrated robot manipulator based on visual servoing. ISA Transactions, 68(4), 402–411. https://doi.org/10.1016/j.isatra.2016.10.006
  • Mechali, O., Iqbal, J., Mechali, A., Xie, X., & Xu, L. (2021). Finite-time attitude control of uncertain quadrotor aircraft via continuous terminal sliding-mode-based active anti-disturbance approach. In 2021 IEEE International Conference on Mechatronics and Automation (ICMA) (pp. 1170–1175). IEEE.
  • Mofid, O., & Mobayen, S. (2018). Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Transactions, 72, 1–14. https://doi.org/10.1016/j.isatra.2017.11.010
  • Ni, J., Liu, L., Liu, C., Hu, X., & Li, S. (2016). Fast fixed-time nonsingular terminal sliding mode control and its application to chaos suppression in power system. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 151–155. https://doi.org/10.1109/TCSII.2016.2551539
  • Olfati-Saber, R. (2001). Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles (Unpublished doctoral dissertation). Massachusetts Institute of Technology.
  • Pan, B., Fareed, U., Qing, W., & Tian, S. (2019). A novel fractional order PID navigation guidance law by finite time stability approach. ISA Transactions, 94(1), 80–92. https://doi.org/10.1016/j.isatra.2019.04.019
  • Polyakov, A. (2011). Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 57(8), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869
  • Riachy, S., Orlov, Y., Floquet, T., Santiesteban, R., & Richard, J. P. (2008). Second-order sliding mode control of underactuated mechanical systems I: Local stabilization with application to an inverted pendulum. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 18(4–5), 529–543. https://doi.org/10.1002/(ISSN)1099-1239
  • Talebi, H. A., Khorasani, K., & Tafazoli, S. (2008). A recurrent neural-network-based sensor and actuator fault detection and isolation for nonlinear systems with application to the satellite's attitude control subsystem. IEEE Transactions on Neural Networks, 20(1), 45–60. https://doi.org/10.1109/TNN.2008.2004373
  • Tian, B., Lu, H., Zuo, Z., & Wang, H. (2018). Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dynamics, 94(4), 2889–2899. https://doi.org/10.1007/s11071-018-4532-3
  • Tian, Y., Cai, Y., & Deng, Y. (2020). A fast nonsingular terminal sliding mode control method for nonlinear systems with fixed-time stability guarantees. IEEE Access, 8, 60444–60454. https://doi.org/10.1109/ACCESS.2020.2980044
  • ud Din, S., & Khan, Q. (2018). Smooth super-twisting sliding mode control for the class of underactuated systems. PloS One, 13(10), e0203667. https://doi.org/10.1371/journal.pone.0203667
  • Ullah, S., Khan, Q., Mehmood, A., & Bhatti, A. I. (2020). Robust backstepping sliding mode control design for a class of underactuated electro-mechanical nonlinear systems. Journal of Electrical Engineering & Technology, 15(4), 1821–1828. https://doi.org/10.1007/s42835-020-00436-3
  • Ullah, S., Khan, Q., Mehmood, A., Kirmani, S. A. M., & Mechali, O. (2021). Neuro-adaptive fast integral terminal sliding mode control design with variable gain robust exact differentiator for under-actuated quadcopter UAV. ISA Transactions. https://doi.org/10.1016/j.isatra.2021.02.045
  • Ullah, S., Mehmood, A., Khan, Q., Rehman, S., & Iqbal, J. (2020). Robust integral sliding mode control design for stability enhancement of under-actuated quadcopter. International Journal of Control, Automation and Systems, 18(7), 1671–1678. https://doi.org/10.1007/s12555-019-0302-3
  • Utkin, V., Guldner, J., & Shi, J. (2009). Sliding mode control in electro-mechanical systems. CRC Press.
  • Wu, Q., Wang, X., Hua, L., & Xia, M. (2021). Modeling and nonlinear sliding mode controls of double pendulum cranes considering distributed mass beams, varying roped length and external disturbances. Mechanical Systems and Signal Processing, 158(9), Article 107756. https://doi.org/10.1016/j.ymssp.2021.107756
  • Yang, T., Sun, N., & Fang, Y. (2021a). Adaptive fuzzy control for a class of MIMO underactuated systems with plant uncertainties and actuator deadzones: Design and experiments. IEEE Transactions on Cybernetics, 1–14. https://doi.org/10.1109/TCYB.2021.3050475
  • Yang, T., Sun, N., & Fang, Y. (2021b). Adaptive fuzzy control for uncertain mechatronic systems with state estimation and input nonlinearities. IEEE Transactions on Industrial Informatics, 18(3), 1770–1780. https://doi.org/10.1109/TII.2021.3089143
  • Ye, D., Zhang, H., Tian, Y., Zhao, Y., & Sun, Z. (2020). Fuzzy sliding mode control of nonparallel-ground-track imaging satellite with high precision. International Journal of Control, Automation and Systems, 18(6), 1617–1628. https://doi.org/10.1007/s12555-018-0369-2
  • Zaare, S., & Soltanpour, M. R. (2021). The position control of the ball and beam system using state-disturbance observe-based adaptive fuzzy sliding mode control in presence of matched and mismatched uncertainties. Mechanical Systems and Signal Processing, 150, Article 107243. https://doi.org/10.1016/j.ymssp.2020.107243
  • Zhang, M., & Tarn, T. J. (2002). Hybrid control of the pendubot. IEEE/ASME Transactions on Mechatronics, 7(1), 79–86. https://doi.org/10.1109/3516.990890
  • Zhang, Y., Tang, S., & Guo, J. (2018). Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence. International Journal of Robust and Nonlinear Control, 28(8), 2996–3014. https://doi.org/10.1002/rnc.v28.8
  • Zhao, D., Zhu, Q., & Dubbeldam, J. (2015). Terminal sliding mode control for continuous stirred tank reactor. Chemical Engineering Research and Design, 94(9), 266–274. https://doi.org/10.1016/j.cherd.2014.08.005
  • Zhao, Z. Y., Jin, X. Z., Wu, X. M., Wang, H., & Chi, J. (2022). Neural network-based fixed-time sliding mode control for a class of nonlinear Euler-Lagrange systems. Applied Mathematics and Computation, 415(3), Article 126718. https://doi.org/10.1016/j.amc.2021.126718
  • Zheng, E. H., Xiong, J. J., & Luo, J. L. (2014). Second order sliding mode control for a quadrotor UAV. ISA Transactions, 53(4), 1350–1356. https://doi.org/10.1016/j.isatra.2014.03.010
  • Zuo, Z. (2015). Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 54(3), 305–309. https://doi.org/10.1016/j.automatica.2015.01.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.