30
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Circuit fault detection model using multiclass support vector machine

ORCID Icon &
Received 27 Dec 2022, Accepted 16 Sep 2023, Published online: 30 Oct 2023
 

ABSTRACT

Fault detection in a complex circuit is a tedious process, and it requires specialised manpower to detect and localise the faults. Manual detection is quite time consuming and might be wrong some times. Identification of faults automatically by analysing the circuit using transforms and machine learning algorithm is presented in this research work. A hardware model and a software model are developed to generate the test and train samples, and they are used in simulation analysis to detect the faults. A simple adiabatic adder using metal-oxide-semiconductor field-effect transistor is used in the hardware module, and multiple techniques like adaptive median filtering, Hilbert transform, geometric algebraic scale-invariant feature transform and multiclass support vector machine are used in the simulation model to detect the faults in the circuit. All the stages of simulation analysis results are presented to validate the performance of the proposed model. Normal and faulty conditions are accurately detected by the proposed model with maximum detection accuracy, which reduces the human efforts in designing and developing a circuit.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 702.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.