913
Views
16
CrossRef citations to date
0
Altmetric
Articles

On the beat of the drum: improving the flow shop performance of the Drum–Buffer–Rope scheduling mechanism

&
Pages 3294-3305 | Received 23 Jun 2017, Accepted 19 Oct 2017, Published online: 13 Nov 2017
 

Abstract

One of the main elements of the theory of constraints is its Drum–Buffer–Rope (DBR) scheduling (or release) mechanism that controls the release of jobs to the system. Jobs are not released directly to the shop floor – they are withheld in a backlog and released in accordance with the output rate of the bottleneck (i.e. the drum). The sequence in which jobs are considered for release from the backlog is determined by the schedule of the drum, which also determines in which order jobs are processed or dispatched on the shop floor. In the DBR literature, the focus is on the urgency of jobs and the same procedure is used both for backlog sequencing and dispatching. In this study, we explore the potential of using different combinations of rules for sequencing and dispatching to improve DBR performance. Based on controlled simulation experiments in a pure and general flow shop we demonstrate that, although the original procedure works well in a pure flow shop, it becomes dysfunctional in a general flow shop where job routings vary. Performance can be significantly enhanced by switching from a focus on urgency to a focus on the shortest bottleneck processing time during periods of high load.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.