63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Parameters influencing the temporal behavior of adhesion on the build plate in fused filament fabrication

ORCID Icon, ORCID Icon & ORCID Icon
Pages 362-379 | Received 29 Jun 2022, Accepted 07 Oct 2022, Published online: 12 Oct 2023
 

ABSTRACT

Fused filament fabrication, also known as material extrusion, is an additive manufacturing process used in many industries. Despite its widespread application, common issues like an unwanted deformation of the part to be printed during the process are rarely investigated. These failures, called warping, can be avoided by a sufficient adhesion between build surface and part. Although printing processes can last up to several days, the time dependencies and the mechanism causing adhesion are poorly understood. For this reason, the time dependence of adhesion between polylactic acid and polyamide as printing materials and different building surfaces will be investigated. The adhesion forces can change up to 60% within 20 minutes dependent on the build surface temperature. Higher build surface temperatures lead to a stronger change. These results indicate that besides mechanical adhesion other mechanisms could be involved. Adhesion measurements before and after sandblasting the build surfaces support this. For brass and borosilicate glass as build surface materials, a complete loss of adhesion was observed, whereas it did not change for Pertinax. These overall results lead to the assumption that adhesion occurs because of ionic bond onto brass surfaces and because of hydrogen bond onto borosilicate glass and Pertinax.

Acknowledgments

We would like to thank the working group of Macromolecular and Paper Chemistry of Markus Biesalski and especially Sunna Möhle-Saul for access to DSC measurements and consultation regarding setup and interpretation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Federal Ministry for Economic Affairs and Climate Action within the Central Innovation Programme for small and medium-sized enterprises (SMEs) under Grant 16KN084521.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 868.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.