185
Views
6
CrossRef citations to date
0
Altmetric
Articles

Direct Resinification of Two (1→3)-β-D-Glucans, Curdlan and Paramylon, via Hot-Press Compression Molding

, &
Pages 635-647 | Received 01 Apr 2020, Accepted 02 May 2020, Published online: 19 May 2020
 

Abstract

Hot-press compression molding was attempted to resinify two renewable source-derived linear (1→3)-β-D-glucan polymers, i.e., paramylon or curdlan via the generation of reactive aldehyde groups that tend to crosslink with hydroxyl groups of the glucans. As for the paramylon, the optimal molding temperature was found to be around 220 °C, keeping the pressure at 20 MPa for 3 min, due to its highly crystalline structure. On the other hand, the curdlan resin was producible in the temperature range of 180–240 °C at the same pressure and pressing time. Dynamic mechanical analysis revealed a large temperature dependence of the loss modulus, E’’, for the paramylon-based polymer resin whereas the semi-crystalline curdlan resin was stable in terms of both the storage and loss moduli, E’ and E’’, up to 160 °C. The vaporization of the water formed during the molding, due to the thermal decomposition, and the adsorption of moisture due to the hydrophilic property of the paramylon affected the thermal stability. The curdlan resin exhibited flexural strength and modulus extremely superior to those of regenerated and esterified curdlan films, and even a little superior to those of polyamide-12. The strain at break was comparable to the yield strain of an epoxy resin. On the other hand, the paramylon-based polymer resin was producible, but the resinification property and thermal stability of the paramylon resin was inferior to the curdlan resin due to the former’s highly crystalline structure.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.