185
Views
6
CrossRef citations to date
0
Altmetric
Articles

Direct Resinification of Two (1→3)-β-D-Glucans, Curdlan and Paramylon, via Hot-Press Compression Molding

, &
Pages 635-647 | Received 01 Apr 2020, Accepted 02 May 2020, Published online: 19 May 2020

References

  • Bledzki, A. K.; Gassan, J. Natural Fiber Reinforced Plastics. In Handbook of Engineering Polymeric Materials; Cheremisinoff, N. P. Ed.; CRC Press: New York, 1997; pp 787–837.
  • Doan, T.-T.-L.; Gao, S.-L.; Mäder, E. Jute/Polypropylene Composites I. Effect of Matrix Modification. Comp. Sci. Tech. 2006, 66, 952–963. DOI: 10.1016/j.compscitech.2005.08.009.
  • Kabir, M. A.; Huque, M. M.; Islam, M. R.; Bledzki, A. K. Mechanical Properties of Jute Fiber Reinforced Polypropylene Composite: Effect of Chemical Treatment by Benzenediazonium Salt in Alkaline Medium. BioResources 2010, 5, 1618–1625.
  • Zaman, H. U.; Khan, M. A.; Khan, R. A. Comparative Experimental Measurements of Jute Fiber/Polypropylene and Coir Fiber/Polypropylene Composites as Ionizing Radiation. Polym. Compos. 2012, 33, 1077–1084. DOI: 10.1002/pc.22184.
  • Mohanty, A. K.; Misra, M.; Drzal, L. T. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World. J.Polym. Environ. 2002, 10, 19–26. DOI: 10.1023/A:1021013921916.
  • Puglia, D.; Biagiotti, J.; Kenny, J. M. A Review on Natural Fibre-Based Composites Part II: Application of Natural Reinforcements in Composite Materials for Automotive Industry. J. Nat. Fibers 2005, 1, 23–65. DOI: 10.1300/J395v01n03_03.
  • Pan, P.; Zhu, B.; Kai, W.; Serizawa, S.; Iji, M.; Inoue, Y. Crystallization Behavior and Mechanical Properties of Bio-Based Green Composites Based on Poly(L-Lactide) and Kenaf Fiber. J. Appl. Polym. Sci. 2007, 105, 1511–1520. DOI: 10.1002/app.26407.
  • Kawahara, Y.; Saito, Y.; Yamamoto, K.; Ikeda, Y.; Nishikawa, Y. Study on the Application of Kenaf Core as a Composite Reinforcement: Injection Molding of Kenaf Core/Poly(L-Lactide) Compounds. J. Nat. Fibers 2017, 14, 666–677. DOI: 10.1080/15440478.2016.1266293.
  • Cicero, J. A.; Dorgan, J. R.; Janzen, J.; Garrett, J.; Runt, J.; Lin, J. S. Supramolecular Morphology of Two-Step, Melt-Spun Poly(Lactic Acid) Fibers. J. Appl. Polym. Sci. 2002, 86, 2828–2838. DOI: 10.1002/app.11267.
  • Kawahara, Y.; Hanada, M.; Onosato, S.; Takarada, W.; Takasaki, M.; Takeda, K.; Ikeda, Y.; Kikutani, T. High-Speed Melt Spinning of Polylactide/Poly(Butyleneterephthalate) Bicomponent Fibers: Mechanism of Fiber Structure Development and Dyeing Behavior. J. Macromol. Sci., Part B, Phys. 2019, 58, 828–846. DOI: 10.1080/00222348.2019.1653028.
  • Pyda, M.; Bopp, R. C.; Wunderlich, B. Heat Capacity of Poly(Lactic Acid). J. Chem. Thermodyn. 2004, 36, 731–742. DOI: 10.1016/j.jct.2004.05.003.
  • Pawar, R. P.; Tekale, S. U.; Shisodia, S. U.; Totre, J. T.; Domb, A. J. Biomedical Applications of Poly(Lactic Acid). Recent Pat. Regen. Med. 2014, 4, 40–51. DOI: 10.2174/2210296504666140402235024.
  • Chen, Z.; Zhang, J.; Xiao, P.; Tian, W.; Zhang, J. Novel Thermoplastic Cellulose Esters Containing Bulky Moieties and Soft Segments. ACS Sustainable Chem. Eng. 2018, 6, 4931–4939. DOI: 10.1021/acssuschemeng.7b04466.
  • Marubayashi, H.; Yukinaka, K.; Enomoto-Rogers, Y.; Takemura, A.; Iwata, T. Curdlan Ester Derivatives: Synthesis, Structure, and Properties. Carbohydr. Polym. 2014, 103, 427–433. DOI: 10.1016/j.carbpol.2013.12.015.
  • Harada, T.; Misaki, A.; Saito, H. Curdlan: A Bacterial Gel-Forming β-1,3-Glucan. Arch. Biochem. Biophys. 1968, 124, 292–298. DOI: 10.1016/0003-9861(68)90330-5.
  • Zhang, R.; Edgar, K. J. Properties, Chemistry, and Applications of the Bioactive Polysaccharide Curdlan. Biomacromolecules 2014, 15, 1079–1096. DOI: 10.1021/bm500038g.
  • Marchessault, R. H.; Deslandes, Y. Fine Structure of (1→3)- β-D-Glucans: Curdlan and Paramylon. Carbohydr. Polym. 1979, 75, 231–242. DOI: 10.1016/S0008-6215(00)84642-X.
  • Shibakami, M.; Sohma, M. Synthesis and Thermal Properties of Paramylon Mixed Esters and Optical, Mechanical, and Crystal Properties of Their Hot-Pressed Films. Carbohydr. Polym. 2017, 155, 416–424. DOI: 10.1016/j.carbpol.2016.08.093.
  • Kawahara, Y.; Koganemaru, A. Development of Novel Film Using Paramylon Prepared from Euglena gracilis. J. Appl. Polym. Sci. 2006, 102, 3495–3497. DOI: 10.1002/app.24618.
  • Kawahara, Y. (1 → 3)-β-D-Glucan Nanofibers from Paramylon via Electrospinning. Carbohydr. Polym. 2014, 112, 73–76. DOI: 10.1016/j.carbpol.2014.05.066.
  • Kobayashi, K.; Kimura, S.; Togawa, E.; Wada, M.; Kuga, S. Crystal Transition of Paramylon with Dehydration and Hydration. Carbohydr. Polym. 2010, 80, 491–497. DOI: 10.1016/j.carbpol.2009.12.009.
  • Kawahara, Y.; Hirai, S. Resinification Behavior of Regenerated Feather Keratin Powder. J. Nat. Fibers 2018, 15, 707–716. DOI: 10.1080/15440478.2017.1361370.
  • McBurney, L. F. Degradative Effect of Light, Heat, and Laundering. In Cellulose and Cellulose Derivatives, Part 1; Ott, E.; Spurlin, H.M.; Grafflin, M.W. Eds.; Interscience Publishers, Inc.: New York, 1954; pp 168–183.
  • Nakao, Y.; Toda, J.; Terasaki, M. Curdlan no Seishitsu to Syokuhinenoriyou. J. Cook. Sci. Japan (Chorikagaku) 1989, 22, 164–172. DOI: 10.11402/cookeryscience1968.22.3_164.
  • Suzuki, K. Project leader. Strategic core technology advancement program report, METI Kanto branch, 2014; p 13. https://www.chusho.meti.go.jp/keiei/sapoin/portal/seika/2012/24131319209.pdf.
  • Matsuoka, S.; Kawamoto, H.; Saka, S. Reducing End-Group of Cellulose as a Reactive Site for Thermal Discoloration. Polym. Degrad. Stab. 2011, 96, 1242–1247. DOI: 10.1016/j.polymdegradstab.2011.04.009.
  • Matsuoka, S.; Kawamoto, H.; Saka, S. Thermal Glycosylation and Degradation Reactions Occurring at the Reducing Ends of Cellulose during Low-Temperature Pyrolysis. Carbohydr. Res. 2011, 346, 272–279. DOI: 10.1016/j.carres.2010.10.018.
  • Marchessault, R. H.; Deslandes, Y.; Ogawa, K.; Sundararajan, P. R. X-Ray Diffraction Data for β-(1→3)-D-Glucan. Can. J. Chem. 1977, 55, 300–303. DOI: 10.1139/v77-045.
  • Saka, S.; Ueno, T. Chemical Conversion of Various Cellulose to Glucose and Its Derivatives in Supercritical Water. Cellulose 1999, 6, 177–191. DOI: 10.1023/A:1009232508644.
  • Kilzer, F. J.; Broido, A. Speculations on Nature of Cellulose Pyrolysis. Pyrodynamic 1965, 2, 151–163.
  • Ahmad, M.; Nirmal, N. P.; Chuprom, J. Blend Film Based on Fish Gelatin/Curdlan for Packaging Applications: Spectral, Microstructural and Thermal Characteristics. RSC Adv. 2015, 5, 99044–99057. DOI: 10.1039/C5RA20925K.
  • Mehta, R. H. Physical Constants of Various Polyamides: Polyamide 6, Polyamide 66, Polyamide 610, Polyamide 12. In Polymer Handbook, 4th ed.; Brandrup, J.; Immergut, E.H.; Grulke, E.A. Eds.; Wiley: New York, 1999, Chapter 5; pp 121–132.
  • Wypych, G. In Handbook of Polymers, 2nd ed.; ChemTec Pub.: Toronto, 2016; p 119.
  • Muraoka, T.; Matsuda, S.; Kishi, H. Mechanical Properties and Structure of Epoxy Resins with Different Molecular Weight Distribution. J. Network Polym. 2015, 36, 133–140. DOI: 10.11364/networkpolymer.36.133.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.