255
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis and Characterization of ZnO Nanoparticles and Their Natural Rubber Composites

, , , , &
Pages 697-712 | Received 15 Mar 2020, Accepted 15 Jul 2020, Published online: 03 Aug 2020
 

Abstract

Nanoparticles of zinc oxide were synthesized by a solution combustion method. The average size of these particles was analyzed by using X-ray diffraction. Composites of natural rubber and the ZnO nanoparticles were prepared by a latex blending method. The matrix phase was cured by using the crosslinking agent, pentane-1,5-diylidenediamine. Effects of crosslinking and incorporation of nanoparticles on the tensile and solvent transport properties of the natural rubber were studied in detail. The nature of the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It was observed from the tensile studies that the addition of the curing agent and the ZnO nanoparticles increased the stability considerably. Incorporation of the nanoparticles also considerably increased the solvent resistance of the cured natural rubber. We suggest the addition of ZnO nanoparticles at a low loading level provided better properties compared to other reinforcements, such as carbon black and nano-clay.

Acknowledgment

The authors express their thanks to the Principal and Management of Rajarajeswari College of Engineering, Bangalore for their encouragement and moral support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,107.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.