246
Views
2
CrossRef citations to date
0
Altmetric
Article

The development of Petri net-based continuous Markov chain Monte Carlo methodology applying to dynamic probability risk assessment for multi-state resilience systems with repairable multi-component interdependency under longtermly thereat

ORCID Icon, , &
Pages 935-957 | Received 28 Jul 2023, Accepted 28 Nov 2023, Published online: 09 Dec 2023
 

ABSTRACT

For all the nuclear reactor systems, quantitative assessment of the accident management (AM) effects against long-term external hazards became one of the essential issues after the lesson learned from the Fukushima Daiichi Nuclear Power Plant accident. However, the influence from the safety systems’ stochastic and dynamic shifting between multiple working states, which is related to the interaction with the adjacent components/systems in general, has not been accounted for yet. Therefore, this research aims to develop a dynamic probability risk assessment tool considering repairable multi-component interdependency for investigating the AM influences on the multi-state safety systems under long-term external hazards. Based on the newly proposed methodology in this research via integrating the Petri net (PN) model with the continuous Markov chain Monte Carlo (CMMC) method, a framework applying PN-CMMC methodology to a severe accident analysis code, SPECTRA, had been originally constructed. Different AM influences on the multi-state decay heat removal systems against long-term volcanic ashfall were also quantitatively confirmed, indicating that halving the repairing time is more influential in suppressing the core damage frequency than doubling the number of adjacent electricity support systems. Therefore, the PN-CMMC-SPECTRA framework can further assess the uncharted dynamic multi-state concerns, leading to a safer AM strategy.

Acknowledgments

We would like to express our sincere gratitude to the two anonymous reviewers for their time and effort in reviewing the earlier drafts of the manuscript. Their valuable comments and suggestions have significantly contributed to improving the quality of our work.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 97.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.