Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 48, 2015 - Issue 10
187
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Fluorescence Chemosensor for Determination of Carbon Dioxide and Its Application for Biodegradation Analysis of Polymers

, &
Pages 767-774 | Received 06 Jan 2015, Accepted 15 Apr 2015, Published online: 09 Jul 2015
 

Abstract

A novel fluorescence sensor has been developed and applied for the determination of carbon dioxide released from the biodegradation of polymer materials and for the evaluation of the biodegradability of polymers. The proposed analytical method is based on the extraordinarily quenching effect of carbonate on fluorescence signal of N,N-diphenylthiourea system. Under the optimized experimental conditions, the fluorescence quenching system performed satisfactorily in a linear detection concentration ranging from 2.00 × 10−4 to 9.00 × 10−3 mol L−1 of carbonate. The detection limit is 8.33 × 10−5 mol L−1 for carbonate. This proposed fluorescence system for the selective sensing of carbonate has been successfully applied to determine the biodegradability of polybutylene succinate and related polymers under controlled composting environment with devices assembled in our laboratory. The results exhibited that the biodegradation rate and final biodegradation percentage of biodegradable thermoplastic poly(ester urethane) elastomers, which embodies the block copolymer of poly(butylene succinate) with poly(diethylene glycol succinate), were correlated to the amount of poly(diethylene glycol succinate). In addition, the maximum biodegradation percentage of the testing polymers has reached 45.01%. This research demonstrates the development of chemosensors for rapid, selective, and sensitive detection of carbon dioxide is important and significant for both environmental and biological science.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 745.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.