Publication Cover
Spectroscopy Letters
An International Journal for Rapid Communication
Volume 48, 2015 - Issue 10
187
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Fluorescence Chemosensor for Determination of Carbon Dioxide and Its Application for Biodegradation Analysis of Polymers

, &
Pages 767-774 | Received 06 Jan 2015, Accepted 15 Apr 2015, Published online: 09 Jul 2015

References

  • Kazuya, O.; Toru, F.; Yuzo, Y. Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing 2004, 35, 377–383.
  • Sain, M.; Park, S. H.; Suhara, F.; Law, S. Flame retardant and mechanical properties of natural fibre–Pp composites containing magnesium hydroxide. Polymer Degradation and Stability 2004, 83, 363–367.
  • Charles, J. M. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 2008, 108, 131–139.
  • Vladimir, N.; Sava, V.; Aleksandar, P. Biodegradation of polystyrene-graft-starch copolymers in three different types of soil. Environmental Science and Pollution Research 2014, 21, 9877–9886.
  • Gerald, S. ‘Green’ polymers. Polymer Degradation and Stability 2000, 68, 1–7.
  • Khaled, M. Mostafa; Abdul Rahim Samarkandy; Azza A. El-Sanabary. Synthesis and characterization of (poly(N-vinyl formamide)—pregelled starch—graft copolymer. Journal of Polymer Research 2010, 17, 789–800.
  • Lakshmi, S. Nair; Cato, T. Laurencin. Biodegradable polymers as biomaterials. Progress in Polymer Science 2007, 32, 762–798.
  • Masahiko, O. Chemical syntheses of biodegradable polymers. Progress in Polymer Science 2002, 27, 87–133.
  • Sheikh, N.; Akhavan, A.; Ataeivarjovi, E. Radiation grafting of styrene on starch with high efficiency. Radiation Physics and Chemistry 2013, 85, 189–192.
  • ShiYong, Zh.; Yao, W.; Bin, H.; Kui, L.; ZhongWei, G. Biodegradable polymeric nanoparticles based on amphiphilic principle: Construction and application in drug delivery. Science China Chemistry 2014, 57, 461–475.
  • Paola, R.; Sabrina, C. Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Analytica Chimica Acta 2014, 808, 18–43.
  • Chao, J.; Bingqing, L.; Jingxin, L.; Fang, L. Biodegradation behaviors of poly(P-dioxanone) in different environment media. Journal of Polymers and the Environment 2013, 21, 1088–1099.
  • Albert, L. J.; Ravendra, N. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene. International Biodeterioration & Biodegradation 2000, 45, 57–88.
  • Thitisilp, K.; Rafael, A.; Maria, R.; Mathieu, N.; Thomas, F. R. Development of an automatic laboratory-scale respirometric system to measure polymer biodegradability. Polymer Testing 2006, 25, 1006–1016.
  • Qingling, X.; Songyi, L.; Yukyung, C.; Myung, H. K.; Jean, Bouffard; Juyoung, Y. Polydiacetylene-based colorimetric and fluorescent chemosensor for the detection of carbon dioxide. Journal of the American Chemical Society 2013, 135, 17751–17754.
  • Hiromichi, B.; Kazuyuki, I. Long-duration, low-flow sevoflurane anesthesia using two carbon dioxide absorbents: Quantification of degradation products in the circuit. Anesthesiology 1994, 81, 340–345.
  • Meher, L. C.; Vidya Sagar, D.; Naik, S. N. Technical aspects of biodiesel production by transesterification—A review. Renewable and Sustainable Energy Reviews 2006, 10, 248–268.
  • Donald, L. P.; Alana, S. B.; Klaus, S. L.; Christopher, H. W.; Darryl, P. Butt. A precise method for determining the CO2 content of carbonate materials. Journal of Chemical Education 1998, 75, 1610.
  • Wen-You, L.; Hua, L.; Chun-Xiang, X.; Jie-Bing, Zh.; Zu-Hong, L. Spectroscopic and binding properties of berberine to DNA and its application to DNA detection. Spectroscopy Letters 1998, 31, 128712–128798.
  • Zhen, L.; Wei, X.; Hui, C.; Jin-Ming, L. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing. Analytical Chemistry 2011, 83, 8245–8251.
  • Run, Zh.; Xiaojing, Y.; Yuejiao, Y.; Zhiqiang, Y.; Guilan, W.; Jingli, Y. Development of a heterobimetallic Ru(Ii)–Cu(Ii) complex for highly selective and sensitive luminescence sensing of sulfide anions. Analytica Chimica Acta 2011, 691, 83–88.
  • Jie, S. Quinoline-based ‘‘on-off’’ fluorescent sensor for acetate: Effect of link mode between binding sites and fluorophore on fluorescence changes. Spectroscopy Letters 2012, 45, 262–268.
  • Biradar, D. S.; Thipperudrappa, J.; Hanagodimath, S. M. Fluorescence quenching studies of 1, 3-diphenyl benzene. Spectroscopy Letters 2007, 40, 559–571.
  • Suh, Hyun Lee; Hyun, Jung Kim; Yeon, Ok Lee; Jacques, Vicens; Jong Seung, Kim. Fluoride sensing with a pct-based calix[4]arene. Tetrahedron Letters 2006, 47, 4373–4376.
  • Dong, H. L.; Ho, Y. L.; Jong-In, H. Anion sensor based on the indoaniline–thiourea system. Tetrahedron Letters 2002, 43, 7273–7276.
  • Binglin, Sui; Bosung, Kim; Yuanwei, Zh.; Andrew, F.; Kevin, D. Belfield. Highly selective fluorescence turn-on sensor for fluoride detection. ACS Applied Materials & Interfaces 2013, 5, 2920–2923.
  • Kuo-Xi, X.; Shu-Yan, J.; Wen-Yong, Y.; Hua-Jie, K.; Jing-Lai, Zh.; Chao-Jie, W. Syntheses and highly enantioselective fluorescent recognition of α-hydroxyl/amino carboxylic acid anions in protic solutions. Sensors and Actuators B: Chemical 2013, 177, 384–389.
  • Frederick, M. P.; Thorfinnur, G.; Paul, Jensen; Paul, E. K. Anion recognition using preorganized thiourea functionalized [3]polynorbornane receptors. Organic Letters 2005, 7, 5357–5360.
  • Boyle, E. M.; Comby, S.; Molloy, J. K.; Gunnlaugsson, T. Thiourea derived Troger's bases as molecular cleft receptors and colorimetric sensors for anions. The Journal of Organic Chemistry 2013, 78, 8312–8319.
  • Kuan-Hung, C.; Jen-Hai, L.; Hsin-Yu, C.; Jim-Min, F. A fluorescence sensor for detection of geranyl pyrophosphate by the chemo-ensemble method. The Journal of Organic Chemistry 2008, 73, 895–898.
  • Thorfinnur, G.; Anthony, P. D.; John, E. O.; Mark, G. Fluorescent sensing of pyrophosphate and bis-carboxylates with charge neutral pet chemosensors. Organic Letters 2002, 4, 2449–2452.
  • Emma, B. Veale; Thorfinnur, G. Bidirectional photoinduced electron-transfer quenching is observed in 4-amino-1,8-naphthalimide-based fluorescent anion sensors. The Journal of Organic Chemistry 2008, 73, 8073–8076.
  • Mireille, V.; Nathaniel, S. F. Thioureas as reporting elements for metal-responsive fluorescent chemosensors. The Journal of Organic Chemistry 2013, 78, 3980–3988.
  • Fang-Ying, W.; Zhao, L.; Zhen-Chang, W.; Ning, Zh.; Yu-Fen, Zh.; Yun-Bao, J. A novel thiourea-based dual fluorescent anion receptor with a rigid hydrazine spacer. Organic Letters 2002, 4, 3203–3205.
  • Ji-Feng, Zh.; Jun-Ying, X.; Bao-Lei, W.; Yu-Xin, L.; Li-Xia, X.; Yong-Qiang, L.; Yi, M.; Zheng-Ming, L. Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea. Journal of Agricultural and Food Chemistry 2012, 60, 7565–7572.
  • Kumaresh, G.; Suman, A. Colorimetric and fluorescence sensing of anions using thiourea based coumarin receptors. Tetrahedron Letters 2006, 47, 8165–8169.
  • Jie, Shao. Quinoline-based “on-off” fluorescent sensor for acetate: Effect of link mode between binding sites and fluorophore on fluorescence changes. Spectroscopy Letters 2012, 45, 262–268.
  • Miguel, Vázquez; Luigi, Fabbrizzi; Angelo, Taglietti; Rosa, M. P.; Ana, M. González-Noya; Manuel, R. Bermejo. A colorimetric approach to anion sensing: A selective chemosensor of fluoride Ions, in which color is generated by anion-enhanced Π delocalization. Angewandte Chem 2004, 116, 1996–1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.