Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Latest Articles
43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound-assisted synthesis of novel Schiff bases from 3-(2-oxo-2H-chromen-3-yl)-1-(4-phenylthiazol-2-yl)-1H-pyrazole-4-carboxaldehyde and their cytotoxicity, apoptosis, cell cycle, molecular docking, and ADMET profiling

, , , , &
Received 19 Mar 2024, Published online: 10 May 2024
 

Abstract

With the ultimate goal of discovering new anticancer agents, this study involved the design and synthesis of fifteen novel Schiff bases 4a,b, 5, 6a–d, 7a–e, and 8–10 which contain 3-(2-oxo-2H-chromen-3-yl)-1-(4-phenylthiazol-2-yl)-1H-pyrazole moiety. The synthetic method depended on reaction of 3-(2-oxo-2H-chromen-3-yl)-1-(4-phenylthiazol-2-yl)-1H-pyrazole-4-carboxaldehyde (3) with a series of aromatic and heteroaryl amines under ultrasound irradiation to explore the influence of aromatic and heteroaryl rings on biological activity. The chemical structures of these Schiff bases were fully elucidated using various spectral and elemental analyses. The antiproliferative activities of the Schiff bases were studied by the standard SRB method. Among the new 15 Schiff bases, derivatives 4a,b, 5, and 7b have significant cytotoxic effects against PC3, HepG2, and HCT116 cancer cell lines. These four bioactive Schiff bases significantly increased the late apoptosis of all studied tumor cells. Also, both products 4a and 4b arrested the cell cycle at the G1 phase, while both compounds 5 and 7b arrested the S and G2 phases against PC3 cells. In addition, the products 4a, 4b, 5, and 7b have promising high abilities to arrest the cell cycle at the G2 phase against HepG2 and HCT116 cells. The different substitutions on the aryl ring were the basis for the structure–activity relationship study. The molecular docking study confirmed good binding interactions of these compounds with Cyclin-dependent kinase 8 (CDK-8) receptor, while the absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction supported that these bioactive products can be promising anticancer agents.

Graphical Abstract

Supplemental data

Full experimental details and spectral data of the synthesized compounds can be accessed on the publisher’s website.

Additional information

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP-2/18/45.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 422.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.