Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 54, 2024 - Issue 11
94
Views
0
CrossRef citations to date
0
Altmetric
Articles

Ultrasound-assisted synthesis of novel Schiff bases from 3-(2-oxo-2H-chromen-3-yl)-1-(4-phenylthiazol-2-yl)-1H-pyrazole-4-carboxaldehyde and their cytotoxicity, apoptosis, cell cycle, molecular docking, and ADMET profiling

, , , , &
Pages 881-908 | Received 19 Mar 2024, Published online: 10 May 2024

References

  • Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different Schiff Bases-Structure, Importance and Classification. Molecules 2022, 27, 787. DOI: 10.3390/molecules27030787.
  • Tidwell, T. T. H. (S. Schiff Bases, and a Century of α-Lactam Synthesis. Angew. Chem. Int. Ed. Engl. 2008, 47, 1016–1020. DOI: 10.1002/anie.200702965.
  • Arulmurugan, S.; Kavitha, H. P.; Venkatraman, B. R. Biological Activities of Schiff Base and Its Complexes: A Review. Rasayan J. Chem. 2010, 3, 385–410. https://www.rasayanjournal.co.in/vol-3/issue-3/1.pdf
  • Qin, W. L.; Long, S.; Panunzio, M.; Biondi, S. Schiff Bases: A Short Survey on an Evergreen Chemistry Tool. Molecules 2013, 18, 12264–12289. DOI: 10.3390/molecules181012264.
  • Zoubi, W. A. Biological Activities of Schiff Bases and Their Complexes: A Review of Recent Works. IJOC. 2013, 03, 73–95. DOI: 10.4236/ijoc.2013.33A008.
  • Lenahan, C.; Sanghavi, R.; Huang, L.; Zhang, J. H. Rhodopsin: A Potential Biomarker for Neurodegenerative Diseases. Front. Neurosci. 2020, 14, 326. DOI: 10.3389/fnins.2020.00326.
  • Carey, F. A. Organic Chemistry, 5th ed.; MacGraw-Hill: New York, NY, 2003; p. 724
  • Raju, S. K.; Settu, A.; Thiyagarajan, A.; Rama, D.; Sekar, P.; Kumar, S. Synthetic Approaches of Medicinally Important Schiff Bases: An Updated Review. World J. Adv. Res. Rev. 2022, 16, 838–852. DOI: 10.30574/wjarr.2022.16.3.1394.
  • Tsacheva, I.; Todorova, Z.; Momekova, D.; Momekov G.; Koseva, N. Pharmacological activities of Schiff bases and their derivatives with low and high molecular phosphonates. Pharmaceuticals, 2023, 16, 938. DOI: 10.3390/ph16070938.
  • Şener, N.; Özkinali, S.; Altunoglu, Y. C.; Yerlikaya, S.; Gökçe, H.; Zurnaci, M.; Gür, M.; Baloglu, M. C.; Şener, İ. Antiproliferative Properties and Structural Analysis of Newly Synthesized Schiff Bases Bearing Pyrazole Derivatives and Molecular Docking Studies. J. Mol. Struct. 2021, 1241, 130520. DOI: 10.1016/j.molstruc.2021.130520.
  • Sztanke, K.; Maziarka, A.; Osinka, A.; Sztanke, M. An Insight into Synthetic Schiff Bases Revealing Antiproliferative Activities in Vitro. Bioorg. Med. Chem. 2013, 21, 3648–3666. DOI: 10.1016/j.bmc.2013.04.037.
  • Tsacheva, I.; Todorova, Z.; Momekova, D.; Momekov, G.; Koseva, N. Pharmacological Activities of Schiff Bases and Their Derivatives with Low and High Molecular Phosphonates. Pharmaceuticals 2023, 16, 938. DOI: 10.3390/ph16070938.
  • Jos, S.; Suja, N. R. Chiral Schiff Base Ligands of Salicylaldehyde: A Versatile Tool for Medical Applications and Organic synthesis-A Review. Inorg. Chim. Acta 2023, 547, 121323. DOI: 10.1016/j.ica.2022.121323.
  • Shanty, A. A.; Philip, J. E.; Sneha, E. J.; Kurup, M. R. P.; Balachandran, S.; Mohanan, P. V. Synthesis, Characterization and Biological Studies of Schiff Bases Derived from Heterocyclic Moiety. Bioorg. Chem. 2017, 70, 67–73. DOI: 10.1016/j.bioorg.2016.11.009.
  • Al-Masoudi, N. A.; Aziz, N. M.; Mohammed, A. T. Synthesis and in Vitro anti-HIV Activity of Some New Schiff Base Ligands Derived from 5-Amino-4-Phenyl-4 H-1,2,4-Triazole-3-Thiol and Their Metal Complexes. Phosphorus Sulfur Silicon Relat. Element. 2009, 184, 2891–2901. DOI: 10.1080/10426500802591630.
  • Kumar, K. S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. Synthesis, Antiviral Activity and Cytotoxicity Evaluation of Schiff Bases of Some 2-Phenylquinazoline-4(3)H-Ones. Eur. J. Med. Chem. 2010, 45, 5474–5479. DOI: 10.1016/j.ejmech.2010.07.058.
  • Aragón-Muriel, A.; Liscano, Y.; Upegui, Y.; Robledo, S. M.; Ramírez-Apan, M. T.; Morales-Morales, D.; Oñate-Garzón, J.; Polo-Cerón, D. In Vitro Evaluation of the Potential Pharmacological Activity and Molecular Targets of New Benzimidazole-Based Schiff Base Metal Complexes. Antibiotics 2021, 10, 728. DOI: 10.3390/antibiotics10060728.
  • Cozzi, P. G. Metal-Salen Schiff Base Complexes in Catalysis: Practical Aspects. Chem. Soc. Rev. 2004, 33, 410–421. DOI: 10.1039/b307853c.
  • Ashraf, T.; Ali, B.; Qayyum, H.; Haroone, M. S.; Shabbir, G. Pharmacological Aspects of Schiff Base Metal Complexes: A Critical Review. Inorg. Chem. Commun. 2023, 150, 110449. DOI: 10.1016/j.inoche.2023.110449.
  • Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Bonomo, M. G.; Franchini, C.; Sinicropi, M. S. Schiff Bases: Interesting Scaffolds with Promising Antitumoral Properties. Appl. Sci 2021, 11, 1877. DOI: 10.3390/app11041877.
  • Dalia, S. A.; Afsan, F.; Hossain, M. S.; Khan, M. N.; Zakaria, C.; Zahan, M. K.; Ali, M. A Short Review on Chemistry of Schiff Base Metal Complexes and Their Catalytic Application. Int. J. Chem. Stud. 2018, 6, 2859–2866. https://www.chemijournal.com/archives/2018/vol6issue3/PartAP/6-1-394-798.pdf
  • Matela, G. Schiff Bases and Complexes: A Review on AntiCancer Activity. Anticancer. Agents Med. Chem. 2020, 20, 1908–1917. DOI: 10.2174/1871520620666200507091207.
  • Hodnett, E. M.; Mooney, P. D. Antitumor Activities of Some Schiff Bases. J. Med. Chem. 1970, 13, 786–786. DOI: 10.1021/jm00298a065.
  • Bensaber, S. M.; Allafe, H.; Ermeli, N. B.; Mohamed, S. B.; Zetrini, A. A.; Alsabri, S. G.; Erhuma, M.; Hermann, A.; Jaeda, M. I.; Gbaj, A. M. Chemical Synthesis, Molecular Modelling, and Evaluation of Anticancer Activity of Some Pyrazol-3-One Schiff Base Derivatives. Med. Chem. Res. 2014, 23, 5120–5134. DOI: 10.1007/s00044-014-1064-3.
  • Iacopetta, D.; Lappano, R.; Mariconda, A.; Ceramella, J.; Sinicropi, M. S.; Saturnino, C.; Talia, M.; Cirillo, F.; Martinelli, F.; Puoci, F.; et al. Newly Synthesized Imino-Derivatives Analogues of Resveratrol Exert Inhibitory Effects in Breast Tumor Cells. Int. J. Mol. Sci. 2020, 21, 7797. DOI: 10.3390/ijms21207797.
  • Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A Potential Nucleus for anti-Inflammatory Molecules. Med. Chem. Res. 2013, 22, 3049–3060. DOI: 10.1007/s00044-012-0321-6.
  • Gujjar, K. N.; Narasimha, S. M. A Review: Important Applications of Heterocyclic Compounds. Eur. Chem. Bull. 2023, 12, 625–630. DOI: 10.48047/ecb/2023.12.12.42.
  • Abdul Rahman, F. S.; Yusufzai, S. K.; Osman, H.; Mohamad, D.; Synthesis. Characterization and Cytotoxicity Activity of Thiazole Substitution of Coumarin Derivatives. J. Phys. Sci. 2016, 27, 77–87. http://web.usm.my/jps/27-1-16/27-1-5.pdf
  • Benazzouz-Touami, A.; Chouh, A.; Halit, S.; Terrachet-Bouaziz, S.; Makhloufi-Chebli, M.; Ighil-Ahriz, K.; Silva, A. M. S. New Coumarin-Pyrazole Hybrids: Synthesis, Docking Studies and Biological Evaluation as Potential Cholinesterase Inhibitors: In Vitro Anticancer Evaluation, in Silico ADME/T, and Molecular Docking Studies. J. Mol. Struct. 2022, 1249, 131591. DOI: 10.1016/j.molstruc.2021.131591.
  • Gondru, R.; Peddi, S. R.; Manga, V.; Khanapur, M.; Gali, R.; Sirassu, N.; Bavantula, R. One-Pot Synthesis, Biological Evaluation and Molecular Docking Studies of Fused Thiazolo[2,3-b]Pyrimidinone-Pyrazolylcoumarin Hybrids. Mol. Divers. 2018, 22, 943–956. DOI: 10.1007/s11030-018-9845-0.
  • Thacker, P. S.; Goud, N. S.; Argulwar, O. S.; Soman, J.; Angeli, A.; Alvala, M.; Arifuddin, M.; Supuran, C. T. Synthesis and Biological Evaluation of Some Coumarin Hybrids as Selective Carbonic Anhydrase IX and XII Inhibitors. Bioorg. Chem. 2020, 104, 104272. DOI: 10.1016/j.bioorg.2020.104272.
  • Bratenko, M. K.; Sidorchuk, I. I.; Khalaturnik, M. V.; Vovk, M. V. Synthesis and Antimicrobial Activity of New Azomethines Synthesized from 4-Formyl-1-Phenyl-3-Aryl(Heteryl)Pyrazoles. Pharm Chem J. 1999, 33, 81–83. DOI: 10.1007/BF02508112.
  • Desai, J. T.; Desai, C. K.; Desai, K. R. A Convenient, Rapid and Eco-Friendly Synthesis of Isoxazoline, Heterocyclic Moiety Containing Bridge at 2′-Amine as Potential Pharmacological Agent. JICS. 2008, 5, 67–73. DOI: 10.1007/BF03245817.
  • Naik, B.; Desai, K. R. Novel Approach for Rapid and Efficient Synthesis of Heterocyclic Schiff Bases and Azetidinones under Microwave Irradiation. Indian J. Chem. 2006, 45, 267–271. https://nopr.niscpr.res.in/bitstream/123456789/6190/1/IJCB%2045B%281%29%20267-271.pdf
  • Siddiqui, N.; Arshad, M. F.; Khan, S. A. Synthesis of Some New Coumarin Incorporated Thiazolyl Semicarbazones as Anticonvulsants. Acta Pol. Pharm. Drug Res. 2009, 66, 161–167. https://www.ptfarm.pl/pub/File/Acta_Poloniae/2009/2/161.pdf
  • Baig, R. B. N.; Varma, R. S. Alternative Energy Input: mechanochemical, Microwave and Ultrasound-Assisted Organic Synthesis. Chem. Soc. Rev. 2012, 41, 1559–1584. DOI: 10.1039/c1cs15204a.
  • Cravotto, G.; Cintas, P. The Combined Use of Microwaves and Ultrasound: Improved Tools in Process Chemistry and Organic Synthesis. Chemistry 2007, 13, 1902–1909. DOI: 10.1002/chem.200601845.
  • Srivastava, A.; Singh, R. M. Vilsmeier-Haack Reagent: A Facile Synthesis of 2-Chloro-3-Formylquinolines from N-Arylacetamides and Transformation into Different Functionalities. Indian J. Chem. 2005, 44b, 1868–1875. https://nopr.niscpr.res.in/bitstream/123456789/9179/1/IJCB%2044B%289%29%201868-1875.pdf
  • Mamidala, S.; Aravilli, R. K.; Ramesh, G.; Khajavali, S.; Chedupaka, R.; Manga, V.; Vedula, R. R. A Facile One-Pot, Three-Component Synthesis of a New Series of Thiazolyl Pyrazole Carbaldehydes: In Vitro Anticancer Evaluation, in Silico ADME/T, and Molecular Docking Studies. J. Mol. Struct. 2021, 1236, 130356. DOI: 10.1016/j.molstruc.2021.130356.
  • Cuenú, F.; Restrepo-Acevedo, A.; Isabel-Murillo, M.; Eduard Torres, J.; Moreno-Fuquen, R.; Abonia, R.; Kennedy, A. R.; Tenorio, J. C.; Lehmann, C. W. Synthesis, Structural Characterization, and Theoretical Studies of New Pyrazole (E)-2-{[(5-(Tert-Butyl)-1H-Pyrazol-3-yl)Imino]Methyl}Phenol and (E)-2-{[(1-(4-Bromophenyl)-3-(Tert-Butyl)-1H-Pyrazol-5-yl]Imino]Methyl}Phenol. J. Mol. Struct. 2019, 1184, 59–71. DOI: 10.1016/j.molstruc.2019.02.004.
  • Cuenú, F.; Londoño-Salazar, J.; Torres, J. E.; Abonia, R.; D’Vries, R. F. Synthesis, Structural Characterization and Theoretical Studies of a New Schiff Base 4-(((3-(tert-Butyl)-(1-Phenyl)Pyrazol-5-yl)Imino)Methyl)Phenol. J. Mol. Struct. 2018, 1152, 163–176. DOI: 10.1016/j.molstruc.2017.09.078.
  • Kumar, R.; Srinivasa, R. V.; Kapur, S. Emphasizing Morpholine and Its Derivatives (Maid): Typical Candidate of Pharmaceutical Importance. Int. J. Chem. Sci. 2016, 14, 1777–1788. https://www.tsijournals.com/articles/emphasizing-morpholine-and-its-derivatives-maid-a-typical-candidate-of-pharmaceutical-importance.pdf
  • Metwally, M. A.; Gouda, M. A.; Harmal, A. N.; Khalil, A. M. Synthesis, Antitumor, Cytotoxic and Antioxidant Evaluation of Some New Pyrazolotriazines Attached to Antipyrine Moiety. Eur. J. Med. Chem. 2012, 56, 254–262. DOI: 10.1016/j.ejmech.2012.08.034.
  • Wang, G.; Sun, S.; Guo, H. Current Status of Carbazole Hybrids as Anticancer Agents. Eur. J. Med. Chem. 2022, 229, 113999–114014. DOI: 10.1016/j.ejmech.2021.113999.
  • Assiri, M. A.; Ali, T. E.; Alqahtani, M. N.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Synthesis, Cytotoxic Evaluation, Apoptosis, Cell Cycle and Molecular Docking Studies of Some New 5-(Arylidene/Heteroarylidene)-2-(Morpholinoimino)-3-Phenylthiazolidin-4-Ones. Synth. Commun. 2023, 53, 1240–1261. DOI: 10.1080/00397911.2023.2217963.
  • Ali, T. E.; Assiri, M. A.; Alqahtani, M. N.; Shati, A. A.; Alfaifi, M. Y.; Elbehairi, S. E. I. Recyclization of Morpholinochromonylidene-Thiazolidinone Using Nucleophiles: Facile Synthesis, Cytotoxic Evaluation, Apoptosis, Cell Cycle and Molecular Docking Studies of a Novel Series of Azole, Azine, Azepine and Pyran Derivatives. RSC Adv. 2023, 13, 18658–18675. DOI: 10.1039/d3ra02777e.
  • Becke, A. D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A Gen. Phys. 1988, 38, 3098–3100. DOI: 10.1103/physreva.38.3098.
  • Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. DOI: 10.1103/physrevb.37.785.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09, Revision B.01; Wallingford CT, 2009. https://gaussian.com
  • Bondock, S.; Albarqi, T.; Shaaban, I. A.; Abdou, M. M. Novel Asymmetrical Azines Appending 1,3,4-Thiadiazole Sulfonamide: Synthesis, Molecular Structure Analyses, in Silico ADME, and Cytotoxic Effect. RSC Adv. 2023, 13, 10353–10366. DOI: 10.1039/d3ra00123g.
  • Mahmoud, A. M.; Al-Abd, A. M.; Lightfoot, D. A.; El-Shemy, H. A. Anticancer Characteristics of Mevinolin against Three Different Solid Tumor Cell Lines Was Not Solely p53-Dependent. J. Enzyme Inhib. Med. Chem. 2012, 27, 673–679. DOI: 10.3109/14756366.2011.607446.
  • Bashmail, H. A.; Alamoudi, A. A.; Noorwali, A.; Hegazy, G. A.; Ajabnoor, G.; Choudhry, H.; Al-Abd, A. M. Thymoquinone Synergizes Gemcitabine anti-Breast Cancer Activity via Modulating Its Apoptotic and Autophagic Activities. Sci. Rep. 2018, 8, 11674–11685. DOI: 10.1038/s41598-018-30046-z.
  • Nunez, R. DNA Measurement and Cell Cycle Analysis by Flow Cytometry. Curr. Issues Mol. Biol. 2001, 3, 67–70. https://docs.research.missouri.edu/cic/Cell_Cycle_Analysis_by_Flow.pdf
  • Philip, S.; Kumarasiri, M.; Teo, T.; Yu, M.; Wang, S. Cyclin-Dependent Kinase 8: A New Hope in Targeted Cancer Therapy? J. Med. Chem. 2018, 61, 5073–5092. DOI: 10.1021/acs.jmedchem.7b00901.
  • Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. DOI: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.
  • DeLano, W. L. PyMOL: An Open-Source Molecular Graphics Tool. https://legacy.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf.
  • Discovery studio. Available online: https://discover.3ds.com/discovery-studio-visualizer-download.
  • Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. DOI: 10.1038/srep42717.
  • Othman, I. M. M.; Alamshany, Z. M.; Tashkandi, N. Y.; Gad- Elkareem, M. A.; Abd El-Karim, S. S.; Nossier, E. S. Synthesis and Biological Evaluation of New Derivatives of Thieno-Thiazole and Dihydrothiazolo-Thiazole Scaffolds Integrated with a Pyrazoline Nucleus as Anticancer and Multi-Targeting Kinase Inhibitors. RSC Adv. 2022, 12, 561–577. DOI: 10.1039/d1ra08055e.
  • Guerraoui, A.; Goudjil, M.; Direm, A.; Guerraoui, A.; Şengün, İY.; Parlak, C.; Djedouani, A.; Chelazzi, L.; Monti, F.; Lunedei, E.; Boumaza, A. A Rhodanine Derivative as a Potential Antibacterial and Anticancer Agent: Crystal Structure, Spectral Characterization, DFT Calculations, Hirshfeld Surface Analysis, in Silico Molecular Docking and ADMET Studies. J. Mol. Struct. 2023, 1280, 135025. DOI: 10.1016/j.molstruc.2023.135025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.