Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 60, 2022 - Issue 6
739
Views
15
CrossRef citations to date
0
Altmetric
Articles

Enhancing pantograph-catenary dynamic performance using an inertance-integrated damping system

, , , , , ORCID Icon, , , & show all
Pages 1909-1932 | Received 21 Aug 2020, Accepted 24 Jan 2021, Published online: 11 Feb 2021
 

ABSTRACT

For modern electrical rail systems, the pantograph-catenary dynamic performance is one of the most critical challenges. Too much fluctuation in contact forces leads to either accelerated wear of the contacting components or losses of contact and, consequently, arcing. In this work, inertance-integrated pantograph damping systems are investigated with the objective of reducing the contact force standard deviation. Firstly, a multibody pantograph model is developed with its accuracy compared with experimental data. The model is improved through the calibration of the pantograph head suspension parameters and the introduction of both non-ideal joint and flexibility effects. Using the calibrated model, beneficial inertance-integrated damping systems are identified for the pantograph suspension. The results show that the configuration with one inerter provides the best performance among other candidate layouts and contends a 40% reduction of the maximum standard deviation of the contact force over the whole operating speed range in the numerical modelling scenario analysed. Considering the identified configuration, time-domain analysis and modal analysis are investigated. It has been shown that the achieved improvement is due to the fact that with the beneficial inertance-integrated damping system, the first resonance frequency of the pantograph system coincides with the natural frequency of the catenary system.

Acknowledgements

Ming Zhu is supported by the China Scholarship Council-University of Bristol joint PhD Scholarships Programme. Sara Ying Zhang is supported by a National Natural Science Foundation of China under grant number 52008259. Jason Zheng Jiang is supported by an EPSRC Fellowship (EP/T016485/1). Joâo Pombo and Pedro Antunes are supported by FCT, through IDMEC, under LAETA, project UIDB/50022/2020.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China [grant number 52008259]; China Scholarship Council; University of Bristol; Fundação para a Ciência e a Tecnologia [grant number UIDB/50022/2020]; Engineering and Physical Sciences Research Council [grant number EP/T016485/1].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.