Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 52, 2022 - Issue 1
585
Views
6
CrossRef citations to date
0
Altmetric
Animal Pharmacokinetics and Metabolism

Preclinical pharmacokinetics and metabolism of MAK683, a clinical stage selective oral embryonic ectoderm development (EED) inhibitor for cancer treatment

, , , , , , , , , , & show all
Pages 65-78 | Received 08 Nov 2021, Accepted 09 Nov 2021, Published online: 02 Mar 2022
 

Abstract

  1. MAK683 (N-((5-fluoro-2,3-dihydrobenzofuran-4-yl)methyl)-8-(2-methylpyridin-3-yl)-[1,2,4]triazolo[4,3-c]pyrimidin-5-amine) is a potent and orally bioavailable EED inhibitor for the potential treatment in oncology. Pharmacokinetics (PK) in preclinical species are characterised by low to moderate plasma clearances, high oral exposure, and moderate to high oral bioavailability at the dose of 1–2 mg/kg.

  2. A species comparison of the metabolic pathways of MAK683 has been made using [14C]MAK683 incubations with liver microsomes and hepatocytes from rat, dog, cynomolgus monkey, and human. Overall, the in vitro hepatic metabolism pathway of MAK683 in all five species was very complex. A total of 60 metabolites with 19 metabolites >1.5% of the total integrated area in the radiochromatogram of at least one species were identified in five species (rat, mouse, dog, monkey, and human).

  3. The primary in vitro hepatic oxidative metabolism pathway identified in humans involved 2-hydroxylation of the dihydrofuran ring to form alcohol (M28), which was in a chemical equilibrium favouring the formation of its aldehyde form. The aldehyde was then oxidised to the carboxylic acid metabolite (M26) or reduced to the O-hydroxyethylphenol (M29). N-dealkylation (M1), 3-hydroxylation of the dihydrofuran ring (M27), N-oxidation of the pyridine moiety (M53), and sulphate conjugation of M28 to form M19 were also important biotransformation pathways in human hepatocytes. The above major human hepatic metabolic pathways were also observed across the animal species (rat, mouse, dog, and monkey) mostly providing precursors for the formation of other metabolites via further oxygenation, glucuronidation, and sulphation pathways.

  4. No human-specific metabolites were observed. In addition, in vivo biotransformation was also conducted in bile-duct cannulated (BDC) rat. The metabolism in BDC rat was similar to those observed the in vitro hepatocytes.

Disclosure statement

All authors contributed to the writing of the draft manuscript. All authors read and approved the final manuscript. All authors are employees of, and/or hold stock in Novartis when this work was carried out.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.