Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Latest Articles
20
Views
0
CrossRef citations to date
0
Altmetric
molecular toxicology

An in silico investigation of the toxicological effects and biological activities of 3-phenoxybenzoic acid and its metabolite products

ORCID Icon, &
Received 19 Apr 2024, Accepted 26 May 2024, Accepted author version posted online: 04 Jun 2024
 
Accepted author version

Abstract

We aimed to elucidate the toxic effects and biological activities of 3-phenoxybenzoic acid (3PBA) and its metabolite products. Numerous in silico methods were used to identify the toxic effects and biological activities of 3PBA, including PASS online, molecular docking, ADMETlab 2.0, ADMESWISS, MetaTox, and molecular dynamic simulation. Ten metabolite products were identified via Phase II reactions (O-glucuronidation, O-sulfation, and methylation). All of the investigated compounds were followed by Lipinski's rule, indicating that they were stimulants or inducers of hazardous processes. Because of their high gastrointestinal absorption and ability to reach the blood-brain barrier, the studied compounds' physicochemical and pharmacokinetic properties matched existing evidence of harmful effects, including hematemesis, reproductive dysfunction, allergic dermatitis, toxic respiration, and neurotoxicity. The studied compounds have been linked to the apoptotic pathway, the reproductivity system, neuroendocrine disruptors, phospholipid-translocating ATPase inhibitors, and JAK2 expression. An O-glucuronidation metabolite product demonstrated higher binding affinity and interaction with CYP2C9, CYP3A4, caspase 3, and caspase 8 than 3PBA and other metabolite products, whereas metabolite products from methylation were predominant and more toxic. Our in silico findings partly meet the 3Rs principle by minimizing animal testing before more study is needed to identify the detrimental effects of 3PBA on other organs (liver, kidneys). Future research directions may involve experimental validation of in silico predictions, elucidation of molecular mechanisms, and exploration of therapeutic interventions. These findings contribute to our understanding of the toxicological profile of 3PBA and its metabolites, which has implications for risk assessment and regulatory decisions.

Disclaimer

As a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.