945
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Structure and cohomology of 3-Lie-Rinehart superalgebras

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4883-4904 | Received 24 Dec 2020, Accepted 07 May 2021, Published online: 22 Jul 2021

Abstract

We introduce a concept of 3-Lie-Rinehart superalgebra and systematically describe a cohomology complex by considering coefficient modules. Furthermore, we study the relationships between a Lie-Rinehart superalgebra and its induced 3-Lie-Rinehart superalgebra. The deformations of 3-Lie-Rinehart superalgebra are considered via a cohomology theory.

2020 Mathematics subject classification:

1. Introduction

The notion of Lie-Rinehart algebras was introduced by J. Herz in [Citation32] and mainly developed in [Citation49, Citation50]. A Lie-Rinehart algebra can be thought as a Lie K-algebra, which is also an A-module, where A is an associative and commutative K-algebra, in such a way that both structures are related by a compatibility condition. A first approach to this class of algebras can be found in [Citation34, Citation36].

G. Rinehart developed in [Citation50] a formalism of differential forms for general commutative algebras which relies on the notion of (K,A)-Lie algebra where K is a commutative ring with unit and A is a commutative K-algebra. The notion of Lie-Rinehart algebra includes an abstract algebraic characterization of the algebraic structure which underlies a Lie algebroid [Citation33, Citation34, Citation44, Citation45]. Thus a Lie-Rinehart algebra is an algebraic generalization of the notion of a Lie algebroid: the space of sections of a vector bundle is replaced by a module over a ring, a vector field by a derivation of the ring. For further details and a history of the notion of Lie-Rinehart algebra, we refer to [Citation37]. Lie-Rinehart algebras have been investigated further in many papers [Citation19, Citation22, Citation26, Citation34–36, Citation38–40, Citation44].

Some generalizations of Lie-Rinehart algebras, such as Lie-Rinehart superalgebras [Citation25] or restricted Lie-Rinehart algebras [Citation27], have been recently studied. The cohomology HRin*(L;M) of a Lie-Rinehart algebra L with coefficients in a Lie-Rinehart module M was first defined by Rinehart [Citation50] and further developed in [Citation34].

In [Citation22–24], the authors introduced a notion of cross modules of Lie-Rinehart algebras. Hom-Lie-Rinehart algebras and their extensions in the small dimension cohomology space was introduced and studied in [Citation46]. Hom-Rinehart algebras have close relations with Hom-Gerstenhaber Algebras and Hom-Lie Algebroids [Citation47, Citation48].

The study of 3-Lie algebras [Citation29] gets a lot of attention since it has close relationships with Lie algebras, Hom-Lie algebras, commutative associative algebras, and cubic matrices [Citation14–16, Citation20]. For example, it is applied to the study of Nambu mechanics and the study of supersymmetry and gauge symmetry transformations of the world-volume theory of multiple coincident M2-branes [Citation10, Citation46, Citation51, Citation52]. A notion of n-Lie Rinehart algebras was introduced recently in [Citation18] and extensions and crossed modules were developed for such algebras.

In 1996, the concept of n-Lie superalgebras was firstly introduced by Daletskii and Kushnirevich in [Citation28]. Moreover, Cantarini and Kac gave a more general concept of n-Lie superalgebras again in 2010 (see [Citation21]). n-Lie superalgebras are more general structures including n-Lie algebras, n-ary Nambu-Lie superalgebras, and Lie superalgebras. The construction of (n + 1)-Lie algebras induced by n-Lie algebras using a combination of bracket multiplication with a trace, motivated by the works on the quantization of the Nambu brackets [Citation11], was generalized using the brackets of general Hom-Lie algebra or n-Hom-Lie algebra and trace-like linear forms satisfying some conditions depending on the linear maps defining the Hom-Lie or n-Hom-Lie algebras in [Citation8, Citation9]. The structure of 3-Lie algebras induced by Lie algebras, classification of 3-Lie algebras and application to constructions of B.R.S. algebras have been considered in [Citation1, Citation3, Citation4]. Interesting constructions of ternary Lie superalgebras in connection to superspace extension of Nambu-Hamilton equation is considered in [Citation5]. In [Citation17], a method was demonstrated of how to construct n-ary multiplications from the binary multiplication of a Hom-Lie algebra and a (n2)-linear function satisfying certain compatibility conditions. Solvability and Nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras have been considered in [Citation43]. In [Citation1, Citation2, Citation5], 3-Lie superalgebras were constructed starting with a Lie superalgebras and various properties of such algebras considered. Related constructions for n-ary hom-Lie algebras and for n-ary hom-Lie superalgebras can be found in [Citation6–9, Citation17, Citation30, Citation42]. The ternary case of (Hom-)Lie Rinehart algebras was developed in [Citation12, Citation13, Citation31].

This paper is organized as follows. In Section 1, we recall the notion of Lie-Rinehart superalgebras and define their cohomology groups. We generalize the Lie-Rinehart superalgebra to the ternary case. Section 2 is devoted to some construction results. We begin by constructing 3-Lie-Rinehart superalgebras starting with a Lie-Rinehart superalgebras. We construct some new 3-Lie-Rinehart superalgebras from a given 3-Lie-Rinehart superalgebra. The notion of a module for a 3-Lie-Rinehart superalgebras appears in Section 3, and subsequently we introduce a cochain complex and cohomology of a 3-Lie-Rinehart superalgebras with coefficients in a module. Then we study relations between 1-cocycles and 2-cocycles of a Lie-Rinehart superalgebra and the induced 3-Lie-Rinehart superalgebra. At the end of this section, we study the deformation of 3-Lie-Rinehart superalgebras.

2. Definitions and notations

In this section, we review basic definitions of Lie superalgebras, 3-Lie superalgebras, Lie-Rinehart superalgebras and generalize the notion of 3-Lie-Rinhehart algebras to the super case.

Let V=V0¯V1¯ be a Z2-graded vector space. If vV is a homogenous element, then its degree will be denoted by v¯, where v¯Z2 and Z2={0¯,1¯}. Let End(V) be the Z2-graded vector space of endomorphisms of a Z2-graded vector space V=V0¯V1¯. Denoted by H(V) the set of homogenous elements of V. For the composition of endomorphisms a°b, the graded commutator, defined by [a,b]=a°b(1)a¯b¯b°a for homogeneous a,bEnd(V), induces the structure of Lie superalgebra on the Z2-graded vector space End(V).

2.1. Lie-Rinehart superalgebras

Definition 1.1

([Citation41]). A Lie superalgebra is a pair (g,[·,·]) consisting of a Z2-graded vector space g=g0¯g1¯, an even bilinear map [·,·]:g×gg satisfying the following identities: (1.1) [x,y]=(1)x¯y¯[y,x],(super skew-symetry)(1.1) (1.2) x,y,z(1)x¯z¯[x,[y,z]]=0,(super-Jacobi identity)(1.2) where x, y and z are homogeneous elements in g.

Definition 1.2.

A representation of a Lie superalgebra (g,[·,·]) on a Z2-graded vector space V=V0¯V1¯ is an even linear map μ:ggl(V), such that the following identity is satisfied for all homogeneous x,yg: (1.3) μ([x,y])=μ(x)μ(y)(1)x¯y¯μ(y)μ(x).(1.3)

Now, we recall the definition of Lie-Rinehart superalgebra [Citation25].

Definition 1.3.

A Lie-Rinehart superalgebra L over (an associative supercommutative superalgebra) A is a Lie superalgebra over K with an A-module structure and an even linear map μ:LDer(A), such that that following conditions hold:

  1. μ is a representation of (L,[·,·]) on A.

  2. μ(ax)=aμ(x) for all aA,xL.

  3. The compatibility condition: (1.4) aH(A),x,yH(L):[x,ay]=μ(x)ay+(1)a¯x¯a[x,y].(1.4)

Example 1.4.

Let us observe that Lie-Rinehart superalgebras over A with trivial map μ:LDer(A) are exactly Lie superalgebras. If A=K, then Der(A) = 0 and there is no difference between Lie and Lie-Rinehart superalgebras. Therefore, the concept of Lie-Rinehart superalgebras generalizes the concept of Lie superalgebras.

Example 1.5.

Let A an associative supercommutative superalgebra. Then, the A-module Der(A)A is a Lie-Rinehart superalgebra over A with the bracket [(D,a),(D,a)]=([D,D],D(a)(1)D¯a¯D(a)), and an even map p1:Der(A)ADer(A), the projection onto the first factor.

Now, we define the cohomology of a Lie-Rinehart superalgebra. First we introduce the notion of left module over a Lie-Rinehart superalgebra.

Definition 1.6.

Let M be an A-module. Then M is a left module over a Lie-Rinehart superalgebra L if there exits an even map θ:LMM such that:

  1. θ is a representation of the Lie superalgebra (L,[·,·]) on M.

  2. θ(ax,m)=aθ(x,m) for all aA,xL,mM.

  3. θ(x,am)=(1)a¯x¯aθ(x,m)+μ(x)(a)m for all xH(L),aH(A),mM.

Let (L,A,[·,·],μ) be a Lie-Rinehart superalgebra, and let M be a left module over L. For Lie-Rinehart superalgebra L with coefficients in M, consider the Z+-graded space of K-modules C*(L;M):=n0Cn(L;M) where Cn(L;M)Hom(nL,M) consisting of elements satisfying f(x1,,axi,,xn)=(1)a¯(x¯1+x¯2++x¯i1+f¯)af(x1,,xi,,xn), for all xiH(L),i=1,,n and aH(A).

Define the even linear map δLR:Cn(L;M)Cn+1(L;M) given by δLRf(x1,,xn+1):=i=1n+1(1)i+1+x¯i(f¯+x¯1++x¯i1)θ(xi,f(x1,,x̂i,,xn+1))+1i<jn+1(1)(x¯i+x¯j)(x¯1++x¯i1+x¯i+1++x¯j1)f([xi,xj],x1,,x̂i,,x̂j,,xn+1) for all fCn(L;M),xiH(L), where 1in+1.

With the above notation, the map δLR gives rise to a coboundary map.

Proposition 1.7.

If fCn(L;M), then δLR2fCn+1(L;M) and δLR2=0.

By the above proposition, (C*(L,M),δLR) is a cochain complex. The resulting cohomology of the cochain complex we define to be the cohomology space of Lie-Rinehart superalgebra (L,A,[·,·],μ) with coefficients in M, and we denote this cohomology as H*(L,M).

2.2. 3-Lie-Rinehart superalgebras

Definition 1.8

([Citation21]). A Z2-graded vector space g=g0¯g1¯ is said to be a 3-Lie superalgebra, if it is endowed with an even trilinear map (bracket) [·,·,·]:g×g×gg, satisfying the following conditions: (1.5) [x,y,z]=(1)x¯y¯[y,x,z],[x,y,z]=(1)y¯z¯[x,z,y],(1.5) (1.6) [x,y,[z,u,v]]=[[x,y,z],u,v]+(1)z¯(x¯+y¯)[z,[x,y,u],v]+(1)(z¯+u¯)(x¯+y¯)[z,u,[x,y,v]],(1.6) where x,y,z,u,vg are homogeneous elements.

Proposition 1.9.

Let g be a Z2-graded vector space together with a super skew-symmetric even linear map [·,·,·]:3gg. Then (g,[·,·,·]) is a 3-Lie superalgebra if and only if the following identities hold: (1.7) [[x1,x2,x3],x4,x5](1)x¯3x¯4[[x1,x2,x4],x3,x5]+(1)x¯2(x¯3+x¯4)[[x1,x3,x4],x2,x5](1)x¯1(x¯2+x¯3+x¯4)[[x2,x3,x4],x1,x5]=0,(1.7) (1.8) (1)(x¯4+x¯5)(x¯1+x¯2+x¯3)[[x4,x5,x1],x2,x3]+(1)(x¯4+x¯5)(x¯2+x¯3)[x1,[x4,x5,x2],x3]+(1)(x¯1+x¯2)(x¯3+x¯4)[[x3,x5,x1],x2,x4](1)(x¯3+x¯5)x¯2+x¯4x¯5[x1,[x5,x3,x2],x4]+(1)x¯3(x¯4+x¯5)[x1,x2,[x4,x5,x3]]=0,(1.8) for all xiH(g),1i5.

Proof.

If (g,[·,·,·]) is a 3-Lie superalgebra, then applying Equation(1.6) to the last term in Equation(1.6) for xiH(g),1i5 and using Equation(1.5), [x1,x2,[x3,x4,x5]]=[[x1,x2,x3],x4,x5]+(1)x¯3(x¯1+x¯2)[x3,[x1,x2,x4],x5]+(1)(x¯3+x¯4)(x¯1+x¯2)[x3,x4,[x1,x2,x5]]=[[x1,x2,x3],x4,x5]+(1)x¯3(x¯1+x¯2)[x3,[x1,x2,x4],x5]+(1)(x¯3+x¯4)(x¯1+x¯2)[[x3,x4,x1],x2,x5]+(1)x¯2(x¯3+x¯4)[x1,[x3,x4,x2],x5]+[x1,x2,[x3,x4,x5]], yields Equation(1.7).

Similarly, applying Equation(1.6) to the first and second terms on the right hand side of Equation(1.6) for xiH(g),1i5 and using Equation(1.5), [x1,x2,[x3,x4,x5]]=(1)(x¯4+x¯5)(x¯1+x¯2+x¯3)[x4,x5,[x1,x2,x3](1)(x¯3+x¯5)(x¯1+x¯2)+x¯4x¯5[x3,x5,[x1,x2,x4]]+(1)(x¯3+x¯4)(x¯1+x¯2)[x3,x4,[x1,x2,x5]]=(1)(x¯4+x¯5)(x¯1+x¯2+x¯3)[[x4,x5,x1],x2,x3]+(1)(x¯4+x¯5)(x¯2+x¯3)[x1,[x4,x5,x2],x3]+(1)x¯3(x¯4+x¯5)[x1,x2,[x4,x5,x3]](1)(x¯3+x¯5)(x¯1+x¯2)+x¯4x¯5[[x3,x5,x1],x2,x4](1)(x¯3+x¯5)x¯2+x¯4x¯5[x1,[x3,x5,x2],x4](1)x¯4x¯5[x1,x2,[x3,x5,x4]]+(1)(x¯1+x¯2)(x¯3+x¯4)[x3,x4,[x1,x2,x5]], yields Equation(1.8).

Conversely, suppose that Equation(1.7) and Equation(1.8) hold. First Equation(1.7) gives [[x1,x2,x3],x4,x5]=(1)x¯3x¯4[[x1,x2,x4],x3,x5](1)x¯2(x¯3+x¯4)[[x1,x3,x4],x2,x5]+(1)x¯1(x¯2+x¯3+x¯4)[[x2,x3,x4],x1,x5]=(1)(x¯3+x¯4+x¯5)(x¯1+x¯2)[[x3,x4,x5],x1,x2]+(1)x¯1(x¯2+x¯4+x¯5)+x¯3(x¯4+x¯5)[[x2,x4,x5],x1,x3]+(1)(x¯2+x¯3)(x¯4+x¯4)[[x1,x4,x5],x2,x3]

by Equation(1.8). Thus, g is a 3-Lie superalgebra. □

In the following we recall that given a Lie superalgebra analogue of supertrace one can construct a 3-Lie superalgebra [Citation1]. Let (g,[·,·]) be a Lie superalgebra and τ:gK an even linear form. We say that τ is a supertrace of g if τ([·,·])=0. For any x1,x2,x3H(g), we define the 3-ary bracket by (1.9) [x1,x2,x3]τ=τ(x1)[x2,x3](1)x¯1x¯2τ(x2)[x1,x3]+(1)x¯3(x¯1+x¯2)τ(x3)[x1,x2].(1.9)

Theorem 1.10.

For any Lie superalgebra (g,[·,·]) and supertrace τ, the pair (g,[·,·,·]τ) is a 3-Lie superalgebra.

Definition 1.11.

Let g be a 3-Lie superalgebra, V be a graded vector space and ρ:gggl(V) be an even linear mapping. If ρ satisfies (1.10) ρ(x1,x2)ρ(x3,x4)(1)(x¯1+x¯2)(x¯3+x¯4)ρ(x3,x4)ρ(x1,x2)=ρ([x1,x2,x3],x4)(1)x¯3x¯4ρ([x1,x2,x4],x3),(1.10) (1.11) ρ([x1,x2,x3],x4)=ρ(x1,x2)ρ(x3,x4)+(1)x¯1(x¯2+x¯3)ρ(x2,x3)ρ(x1,x4)+(1)x¯3(x¯1+x¯2)ρ(x3,x1)ρ(x2,x4),(1.11) for all xiH(g),1i4, then (V,ρ) is called a representation of g, or (V,ρ) is an g-module.

Define (1.12) ad:gggl(g),    adx,y(z)=[x,y,z]. (1.12)

Using Equation(1.6), we can see that (g,ad) is a representation of the 3-Lie superalgebra g and it is called the adjoint representation of g.

Proposition 1.12.

Let (V,μ) be a representation of a Lie superalgebra (g,[·,·]) and τ be a supertrace of g. Then (V,ρτ) is a representation of the 3-Lie superalgebra (g,[·,·,·]τ) where ρτ:gggl(V) is defined by (1.13) ρτ(x,y)=τ(x)μ(y)(1)x¯y¯τ(y)μ(x),x,yH(g).(1.13)

Proof.

For all x1,x2,x3,x4H(g), the left hand of Equation(1.10) becomes ρτ(x1,x2)ρτ(x3,x4)(1)(x¯1+x¯2)(x¯3+x¯4)ρτ(x3,x4)ρτ(x1,x2)=(τ(x1)μ(x2)(1)x¯1x¯2τ(x2)μ(x1))(τ(x3)μ(x4)(1)x¯3x¯4τ(x4)μ(x3))(1)(x¯1+x¯2)(x¯3+x¯4)(τ(x3)μ(x4)(1)x¯3x¯4τ(x4)μ(x3))(τ(x1)μ(x2)(1)x¯1x¯2τ(x2)μ(x1))=τ(x1)μ(x2)τ(x3)μ(x4)(1)x¯3x¯4τ(x1)μ(x2)τ(x4)μ(x3)(1)x¯1x¯2τ(x2)μ(x1)τ(x3)μ(x4)(1)x¯1x¯2+x¯3x¯4τ(x2)μ(x1)τ(x4)μ(x3)(1)(x¯1+x¯2)(x¯3+x¯4)τ(x3)μ(x4)τ(x1)μ(x2)+(1)(x¯1+x¯2)(x¯3+x¯4)+x¯1x¯2τ(x3)μ(x4)τ(x2)μ(x1)+(1)(x¯1+x¯2)(x¯3+x¯4)+x¯3x¯4τ(x4)μ(x3)τ(x1)μ(x2)(1)(x¯1+x¯2)(x¯3+x¯4)+x¯1x¯2+x3x¯4τ(x4)μ(x3)τ(x2)μ(x1).

Using Equation(1.9) and Equation(1.13), the right hand of Equation(1.10) can be written as follows: ρτ([x1,x2,x3],x4)(1)x¯3x¯4ρτ([x1,x2,x4],x3)=(1)x¯4(x¯2+x¯3)τ(x1)τ(x4)μ([x2,x3])+(1)x¯4(x¯2+x¯3)+x¯1x¯2τ(x2)τ(x4)μ([x1,x3])(1)(x¯1+x¯2)(x¯3+x¯4)τ(x3)τ(x4)μ([x1,x2])+(1)x¯2x¯3τ(x1)τ(x3)μ([x2,x4])+(1)x¯1x¯2+x¯3(x¯1+x¯4)τ(x2)τ(x3)μ([x1,x4])(1)(x¯1+x¯2)(x¯3+x¯4)τ(x4)τ(x3)μ([x1,x2]).

By direct identification, we proof that ρτ(x1,x2)ρτ(x3,x4)(1)(x¯1+x¯2)(x¯3+x¯4)ρτ(x3,x4)ρτ(x1,x2)=ρτ([x1,x2,x3],x4)(1)x¯3x¯4ρτ([x1,x2,x4],x3).

Similarly, we can proof Equation(1.11). □

We generalize the Lie-Rinehart superalgebra to the ternary case.

Definition 1.13.

A 3-Lie-Rinehart superalgebra over A is a tuple (L,A,[·,·,·],ρ), where A is an associative supercommutative superalgebra, L is an A-module, [·,·,·]:L×L×LL is an even super skew-symmetric trilinear map, and the K-map ρ:L×LDer(A) such that the following conditions hold:

  1. (L,[·,·,·]) is a 3-Lie superalgebra.

  2. ρ is a representation of (L,[·,·,·]) on A.

  3. For all x,yH(L),aH(A), (1.14) ρ(ax,y)=(1)a¯x¯ρ(x,ay)=aρ(x,y).(1.14)

  4. The compatibility condition: (1.15) [x,y,az]=(1)a¯(x¯+y¯)a[x,y,z]+ρ(x,y)az,  x,y,zH(L),aH(A).(1.15)

Remark 1.14.

If ρ = 0, then (L,A,[·,·,·]) is called a 3-Lie A-superalgebra.

Remark 1.15.

If the condition Equation(1.14) is not satisfied, then we call (L,A,[·,·,·],ρ) a weak 3-Lie-Rinehart superalgebra over A.

Definition 1.16.

Let (L,A,[·,·,·]L,ρ) and (L,A,[·,·,·]L,ρ) be two 3-Lie-Rinehart superalgebras, then a 3-Lie-Rinehart superalgebra homomorphism is defined as a pair of maps (g, f), where g:AA and f:LL are two K-algebra homomorphisms such that

  1. f(ax)=g(a)f(x) for all xL,aA,

  2. g(ρ(x,y)(a))=ρ(f(x),f(y))(g(a)) for all xL,aA.

3. Some constructions of 3-Lie-Rinehart superalgebras

In this section, we give some construction results. We begin by constructing 3-Lie-Rinehart superalgebras starting with a Lie-Rinehart superalgebras. We also construct Lie-Rinehart superalgebras starting from 3-Lie-Rinehart superalgebras. At the end of this section, we construct some new 3-Lie-Rinehart superalgebras from a given 3-Lie-Rinehart superalgebra.

The following Theorem generalizes results in [Citation2] to Lie-Rinehart case.

Theorem 2.1.

Let (L,A,[·,·],μ) be a Lie-Rinehart superalgebra and τ is a supertrace. If the condition (2.1) τ(ax)y=τ(x)ay(2.1) is satisfied for any x,yH(L),aH(A), then (L,A,[·,·,·]τ,ρτ) is a 3-Lie-Rinehart superalgebra, where [·,·,·]τ and ρτ are defined in Equation(1.9) and Equation(1.12) respectively. We say that (L,A,[·,·,·]τ,ρτ) is induced by (L,A,[·,·],μ) and denote it by Lτ.

Proof.

Proposition 1.12 gives that (A,ρτ) is a representation of the 3-Lie superalgebra (L,[·,·,·]τ) and ρτ(x,y)Der(A). For all x,y,zH(L) and aH(A), [x,y,az]τ=τ(x)[y,az](1)x¯y¯τ(y)[x,az]+(1)(a¯+z¯)(x¯+y¯)τ(az)[x,y]=(1)a¯(x¯+y¯)aτ(x)[y,z]+τ(x)μ(y)az(1)a¯(x¯+y¯)+x¯y¯aτ(y)[x,z](1)x¯y¯τ(y)μ(x)az+(1)(a¯+z¯)(x¯+y¯)aτ(z)[x,y]=(1)a¯(x¯+y¯)a[x,y,z]τ+ρτ(x,y)az.

So, we obtain Equation(1.15). Since Equation(2.1) is satisfied and ρτ(ax,y)=τ(ax)μ(y)(1)(a¯+x¯)y¯τ(y)μ(ax),(1)a¯x¯ρτ(x,ay)=(1)a¯x¯τ(x)μ(ay)(1)(a¯+y¯)x¯+a¯x¯τ(ay)μ(x),aρτ(x,y)=aτ(x)μ(y)(1)x¯y¯aτ(y)μ(x), the condition Equation(1.14) holds. □

Conversely, we can construct a Lie-Rinehart superalgebra structure from a given 3-Lie-Rinehart superalgebra.

Proposition 2.2.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra. Let x0L0¯. Define the bracket [·,·]x0=[x0,·,·] and ρx0(x)(v)=ρ(x0,x)v. Then (L,A,[·,·]x0,ρx0) is a Lie-Rinehart superalgebra.

Proof.

It is easy to check that the bracket is super skew-symmetric. For any x,y,zH(L), we have [x,[y,z]x0]x0=[x0,x,[x0,y,z]]=[[x0,x,x0],y,z]+[x0,[x0,x,y],z]+(1)x¯y¯[x0,y,[x0,x,z]]=[x0,[x0,x,y],z]+(1)x¯y¯[x0,y,[x0,x,z]]=[[x,y]x0,z]x0+(1)x¯y¯[y,[x,z]x0]x0.

It is obvious to see that ρx0 is a representation of L on A and ρx0(x)Der(A). It remains to prove Equation(1.4). Using Equation(1.15), we obtain [x,ay]x0=[x0,x,ay]=(1)a¯x¯a[x0,x,y]+ρ(x0,x)ay=(1)a¯x¯a[x,y]x0+ρx0(x)ay. which completes the proof. □

Definition 2.3.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra.

  1. If S is a subalgebra of the 3-Lie superalgebra (L,[·,·,·]) satisfying ASS, then (S,A,[·,·,·],ρ|SS) is a 3-Lie-Rinehart superalgebra, which is called a subalgebra of the 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ).

  2. If I is an ideal of the 3-Lie superalgebra (L,[·,·,·]) and satisfies AII and ρ(I,L)(A)LI, then (I,A,[·,·,·],ρ|II) is a 3-Lie-Rinehart superalgebra, which is called an ideal of the 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ).

  3. If a 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ) cannot be decomposed into the direct sum of two nonzero ideals, then L is called an indecomposable 3-Lie-Rinehart superalgebra.

Proposition 2.4.

If (L,A,[·,·,·],ρ) is a 3-Lie-Rinehart superalgebra. Then Kerρ={xH(L)|ρ(x,L)=0} is an ideal, which is called the kernel of the representation ρ.

Proof.

By Equation(1.10) and Equation(1.11), for all homogeneous elements xKerρ,y,z,wH(L), ρ([x,y,z],w)=ρ(x,y)ρ(z,w)+(1)x¯(y¯+z¯)ρ(y,z)ρ(x,w)+(1)z¯(x¯+y¯)ρ(z,x)ρ(y,w)=0.

Therefore, [x,L,L]Kerρ. By Equation(1.14), for all aH(A), ρ(ax,y)=(1)x¯a¯ρ(x,ay)=aρ(x,y)=0,ρ(ρ(x,y)az,w)=ρ(x,y)(a)ρ(z,w)=0.

We get axKerρ,ρ(x,y)azKerρ, that is, AKerρKerρ,ρ(Kerρ,L)(A)LKerρ.

Therefore, Kerρ is an ideal of the 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ).

Theorem 2.5.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra. Then the following identities hold, for all a,b,cH(A),xiH(L),1i5, (2.2) ρ(x2,x3)a[x1,x4,x5]+(1)(x¯1+x¯4)(x¯2+x¯3)+a¯(x¯1+x¯4+x¯2+x¯3)ρ(x1,x4)a[x2,x3,x5]+(1)x¯2(x¯3+x¯1)+a¯(x¯1+x¯2)ρ(x3,x1)a[x2,x4,x5]+(1)x¯4(x¯3+x¯1)+a¯(x¯3+x¯4)ρ(x2,x4)a[x3,x1,x5]+(1)x¯1(x¯2+x¯3)+a¯(x¯1+x¯3)ρ(x1,x2)a[x3,x4,x5]+(1)x¯2(x¯1+x¯3+x¯4)+x¯4x¯1+a¯(x¯2+x¯4))ρ(x3,x4)a[x1,x2,x5]=0,(2.2) (2.3) ρ(x2,x3)(a4a5)[x1,x4,x5]+(1)x¯2(a¯1+a¯4+a¯5+x¯3)ρ(x3,x1)(a4a5)[x2,x4,x5]+(1)x¯1(a¯4+a¯5+x¯2+x¯3)ρ(x1,x2)(a4a5)[x3,x4,x5]+(1)(a¯4+x¯5)(x¯2+x¯3)+(x¯1+x¯4)(x¯2+x¯3+a¯5)a4ρ(x1,x4)a5[x5,x2,x3]+(1)a¯4(x¯2+x¯3)+(x¯4+x¯5)(x¯1+x¯3)+x¯4a¯5a4ρ(x2,x4)a5[x5,x3,x1]+(1)a¯4(x¯2+x¯3)+(x¯4+x¯5)(x¯1+x¯2)+x¯4a¯5a4ρ(x3,x4)a5[x5,x1,x2](1)(x¯1+a¯5+x¯5)(a¯4+x¯2+x¯3)+x¯4(x¯2+x¯3)a5ρ(x1,x5)a4[x4,x2,x3](1)(a¯5+x¯5)(x¯2+x¯3)+(a¯4+x¯5)(x¯3+x¯5)a5ρ(x2,x5)a4[x4,x3,x1](1)a¯5(x¯2+x¯3+a¯4)+(x¯2+x¯5)(x¯1+x¯4+a¯4)+x¯2(x¯3+x¯5)+x¯1x¯4a5ρ(x3,x5)a4[x4,x1,x2])=0,(2.3) (2.4) ρ(x1,x2)ρ(x3,x4)+(1)(x¯1+x¯2)(x¯3+x¯4)ρ(x3,x4)ρ(x1,x2)+(1)x1(x¯2+x¯3)ρ(x2,x3)ρ(x1,x4)+(1)x¯4(x¯2+x¯3)ρ(x1,x4)ρ(x2,x3)+(1)x¯3(x¯1+x¯2)ρ(x3,x1)ρ(x2,x4)+(1)x¯1(x¯2+x¯3+x¯4)+x¯3x¯4ρ(x2,x4)ρ(x3,x1)=0.(2.4) (2.5) (ρ(x1,x2)b)ρ(x3,x4)+(1)x¯3(x¯1+x¯2+b¯)+b¯x¯2(ρ(x3,x1)b)ρ(x2,x4)+(1)x¯1(x¯2+x¯3+b¯)+x¯1b¯(ρ(x2,x3)b)ρ(x1,x4)=0.(2.5)

Proof.

Using Equation(1.15) we have ρ(x2,x3)a[x1,x4,x5]+(1)(x¯1+x¯4)(x¯2+x¯3)+a¯(x¯1+x¯4+x¯2+x¯3)ρ(x1,x4)a[x2,x3,x5]+(1)x¯2(x¯3+x¯1)+a¯(x¯1+x¯2)ρ(x3,x1)a[x2,x4,x5]+(1)x¯4(x¯3+x¯1)+a¯(x¯2+x¯4)ρ(x2,x4)a[x3,x1,x5]+(1)x¯1(x¯2+x¯3)+a¯(x¯1+x¯3)ρ(x1,x2)a[x3,x4,x5]+(1)x¯2(x¯1+x¯3+x¯4)+x¯4x¯1+a¯(x¯2+x¯4))ρ(x3,x4)a[x1,x2,x5]=[x2,x3,a[x1,x4,x5]](1)a¯(x¯2+x¯3)a[x2,x3,[x1,x4,x5]]I1+(1)(x¯1+x¯4)(x¯2+x¯3)+a¯(x¯1+x¯4+x¯2+x¯3)([x1,x4,a[x2,x3,x5]](1)a¯(x¯1+x¯4)a[x1,x4,[x2,x3,x5]]I2)+(1)x¯2(x¯3+x¯1)+a¯(x¯1+x¯2)([x3,x1,a[x2,x4,x5]](1)a¯(x¯3+x¯1)a[x4,x1,[x2,x4,x5]]I3)+(1)x¯4(x¯3+x¯1)+a¯(x¯3+x¯4)([x2,x4,a[x3,x1,x5]](1)a¯(x¯2+x¯4)a[x2,x4,[x3,x1,x5]]I4)+(1)x¯1(x¯2+x¯3)+a¯(x¯1+x¯3)([x1,x2,a[x3,x4,x5]](1)a¯(x¯1+x¯2)a[x1,x2,[x3,x4,x5]]I5)+(1)x¯2(x¯1+x¯3+x¯4)+x¯4x¯1+a¯(x¯2+x¯4))([x3,x4,a[x1,x2,x5]](1)a¯(x¯3+x¯4)a[x3,x4,[x1,x2,x5]]I6).

Thanks to Proposition 1.9, we have i=16Ii=0. Using Equation(1.15), Equation(1.10) and Equation(1.11), we obtain Equation(2.2). Similarly, Equation(2.3)-Equation(2.5) can be verified by a direct computation according to Equation(2.2) and Definition 1.13. □

Now we construct some new 3-Lie-Rinehart superalgebra from a given 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ).

Theorem 2.6.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra and B=AL={ax | aH(A),xH(L)}. Then (B,A,[·,·,·],ρ) is a 3-Lie-Rinehart superalgebra, where the multiplication is defined by, for all x1,x2,x3H(L), a1,a2,a3H(A), (2.6) [a1x1,a2x2,a3x3]=(1)a¯2x¯1+a¯3(x¯1+x¯2)a1a2a3[x1,x2,x3]+(1)a¯2x¯1a1a2ρ(x1,x2)(a3)x3+(1)a¯3x¯2+(a¯1+x¯1)(a¯2+a¯3+x¯2+x¯3)a2a3ρ(x2,x3)(a1)x1+(1)a¯3x¯1+(a¯2+x2)(a¯3+x¯3)a1a3ρ(x1,x3)(a2)x2,(2.6) and ρ:(AL)(AL)Der(A) is defined by ρ(a1x1,a2x2)=(1)a¯2x¯1a1a2ρ(x1,x2).

Note that B=B0¯B1¯ where B0¯=A0¯L0¯A1¯L1¯ and B1¯=A0¯L1¯A1¯L0¯.

Proof.

For the super skew-symmetry of the bracket we have [a1x1,a2x2,a3x3]=(1)a¯2x¯1+a¯3(x¯1+x¯2)a1a2a3[x1,x2,x3]+(1)a¯2x¯1a1a2ρ(x1,x2)(a3)x3+(1)a¯3x¯2+(a¯1+x¯1)(a¯2+a¯3+x¯2+x¯3)a2a3ρ(x2,x3)(a1)x1+(1)a¯3x¯1+(a¯2+x2)(a¯3+x¯3)a1a3ρ(x1,x3)(a2)x2=(1)(a¯1+x¯1)(a¯2+x¯2)((1)a¯1x¯2+a¯3(x¯1+x¯2)a2a1a3[x2,x1,x3]+(1)a¯1x¯2a2a1ρ(x2,x1)(a3)x3+(1)a¯3x¯1+(a¯2+x¯2)(a¯1+a¯3+x¯2+x¯3)a1a3ρ(x1,x3)(a2)x2+(1)a¯3x¯2+(a¯1+x1)(a¯3+x¯3)a2a3ρ(x2,x3)(a1)x1)=(1)(a¯1+x¯1)(a¯2+x¯2)[a2x2,a1x1,a3x3].

Similarly, we obtain [a1x1,a2x2,a3x3]=(1)(a¯2+x¯2)(a¯3+x¯3)[a1x1,a3x3,a2x2].

Using Equation(2.2) and Equation(2.3), we can deduce that (B,[·,·,·]) is a 3-Lie superalgebra and B is an A-module. Thanks to Equation(1.10) and Equation(1.11), for all x1,x2,x3H(L) and b,a1,a2,a3H(A), it is easy to show that (A,ρ) is a representation of B. Indeed, 2ρ(a1x1,a2x2)ρ(a3x3,a4x4)(1)(a¯1+x¯1+a¯2+x¯2)(x¯3+a¯3+x¯4+x¯4)ρ(a3x3,a4x4)ρ(a1x1,a2x2)=ρ([a1x1,a2x2,a3x3],a4x4)+(1)(a¯1+x¯1+a¯2+x¯2)(a¯3+x¯3)ρ(a3x3,[a1x1,a2x2,a4x4]),ρ(a1x1,a2x2)ρ(a3x3,a4x4)+(1)(a¯1+x¯1)(a¯2+x¯2+x¯3+x¯3)ρ(a2x2,a3x3)ρ(a1x1,a4x4)+(1)(a¯1+x¯1+a¯2+x¯2)(a¯3+x¯3)ρ(a3x3,a1x1)ρ(a2x2,a4x4)=ρ([a1x1,a2x2,a3x3],a4x4).

To prove the compatibility condition Equation(1.15), we compute as follows [a1x1,a2x2,b(a3x3)]=(1)a¯2x¯1+(a¯3+b¯)(x¯1+x¯3)a1a2ba3[x1,x2,x3]+(1)a¯2x¯1a1a2ρ(x1,x2)(ba3)x3+(1)(b¯+a¯3)x¯2+(a¯+x¯1)(a¯2+x¯2+a¯3+x¯3)a2ba3ρ(x2,x3)a1x1+(1)(b¯+a¯3)x¯1+(a¯2+x¯2)(a¯3+b¯+x¯3a1ba3ρ(x1,x3)a2x2=(1)b¯(a¯1+x¯1+a¯2+x¯2)b(a1a2a3[x1,x2,x3]+(1)a¯2x¯1a1a2ρ(x1,x2)a3x3+(1)a¯3x¯2+(a¯1+x¯1)(a¯2+x¯2+a¯3+x¯3)a2a3ρ(x2,x3)a1x1+(1)a¯3x¯1+(a¯2+x¯2)(a¯3+x¯3)a1a3ρ(x1,x3)a2x2)+(1)a¯2x¯1a1a2ρ(x1,x2)b(a3x3)=(1)b¯(a¯1+x¯1+a¯2+x¯2)b[a1x1,a2x2,a3x3]+ρ(a1x1,a2x2)b(a3x3).

It is obvious to show that ρ(b(a1x1),a2x2)=bρ(a1x1,a2x2)=(1)b¯(a¯+x¯1)ρ(a1x1,b(a2x2)).

Therefore, (B,A,[·,·,·],ρ) is a 3-Lie-Rinehart superalgebra. □

Theorem 2.7.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra and E=LA={(x,a)|xL,aA}.

Then (E,A,[·,·,·]1,ρ1) is a 3-Lie-Rinehart superalgebra, where for any a,b,cH(A), x,y,zH(L) and kK, (2.7) k(x,a)=(kx,ka),(x,a)+(y,b)=(x+y,a+b),a(y,b)=(ay,ab),(2.7) (2.8) [(x,a),(y,b),(z,c)]1=([x,y,z],ρ(x,y)c(1)y¯z¯ρ(x,z)b+(1)x¯(y¯+z¯)ρ(y,z)a),(2.8) (2.9) ρ1:EEDer(A),ρ1((x,a),(y,b))=ρ(x,y).(2.9)

Note that E=E0¯E1¯, where E0¯=L0¯A0¯ and E1¯=L1¯A1¯.

Proof.

Let xiH(L),aiH(A),i=1,,5. Thanks to Equation(2.7), E is an A module, and the 3-ary linear multiplication defined by Equation(2.8) is super skew-symmetric. We have [(x1,a1),(x2,a2),[(x3,a3),(x4,a4),(x5,a5)]1]1=[(x1,a1),(x2,a2),([x3,x4,x5],ρ(x3,x4)a5(1)x¯4x¯5ρ(x3,x5)a4+(1)x¯3(x¯4+x¯5)ρ(x4,x5)a3)]1=([x1,x2,[x3,x4,x5]],ρ(x1,x2)ρ(x3,x4)a5(1)x¯4x¯5ρ(x1,x2)ρ(x3,x5)a4+(1)x¯3(x¯4+x¯5)ρ(x1,x2)ρ(x4,x5)a3(1)x¯2(x¯3+x¯4+x¯5)ρ(x1,[x3,x4,x5])a2(1)x¯1(x¯2+x¯3+x¯4+x¯5)ρ(x2,[x3,x4,x5])a1).

Similarly, we obtain [[(x1,a1),(x2,a2),(x3,a3)]1,(x4,a4),(x5,a5)]1+(1)x¯3(x¯1+x¯2)[(x3,a3),[(x1,a1),(x2,a2),(x4,a4)]1,(x5,a5)]1+(1)(x¯3+x¯4)(x¯1+x¯2)[(x3,a3),(x4,a4),[(x1,a1),(x2,a2),(x5,a5)]1]1=[([x1,x2,x3],ρ(x1,x2)a3(1)x¯2x¯3ρ(x1,x3)a2+(1)x¯1(x¯2+x¯3)ρ(x2,x3)a2),(x4,a4),(x5,a5)]1+(1)x¯3(x¯1+x¯2)([(x3,a3),([x1,x2,x4],ρ(x1,x2)a4(1)x¯2x¯4ρ(x1,x4)a2+(1)x¯1(x¯2+x¯4)ρ(x2,x4)a2),(x5,a5)]1)+(1)(x¯3+x¯4)(x¯1+x¯2)([(x3,a3),(x4,a5),([x1,x2,x5],ρ(x1,x2)a5(1)x¯2x¯5ρ(x1,x5)a2+(1)x¯1(x¯2+x¯5)ρ(x2,x5)a2)]1)=([x1,x2,[x3,x4,x5]],ρ(x1,x2)ρ(x3,x4)a5(1)x¯4x¯5ρ(x1,x2)ρ(x3,x5)a4+(1)x¯4(x¯4+x¯5)ρ(x1,x2)ρ(x4,x5)a3(1)x¯2(x¯3+x¯4+x¯5)ρ(x1,[x3,x4,x5])a2(1)x¯1(x¯2+x¯3+x¯4+x¯5)ρ(x2,[x3,x4,x5])a1)+(1)x¯3(x¯1+x¯2)([x3,[x1,x2,x4],x5],ρ(x3,[x1,x2,x4])a5(1)x¯5(x¯1+x¯2+x¯4)(ρ(x3,x5)ρ(x1,x2)a4(1)x¯2x¯4ρ(x3,x5)ρ(x1,x4)a2+(1)x¯1(x¯2+x¯4)ρ(x3,x5)ρ(x2,x4)a1)+(1)x¯3(x¯1+x¯2+x¯4+x¯5)ρ([x1,x2,x4],x5)a3)+(1)(x¯3+x¯4)(x¯1+x¯2)([x3,x4,[x1,x2,x5]],ρ(x3,x4)ρ(x1,x2)a5(1)x¯2x¯5ρ(x3,x4)ρ(x1,x5)a2+(1)x¯1(x¯2+x¯5)ρ(x3,x4)ρ(x2,x5)a1(1)x¯4(x¯1+x¯2+x¯5)ρ(x3,[x1,x2,x5])a4+(1)x¯3(x¯1+x¯2+x¯4+x¯5)ρ(x4,[x1,x2,x5])a3).

Then Equation(1.6) holds thanks to Equation(1.10). Therefore, (E,[·,·,·]1) is a 3-Lie superalgebra.

Now we prove that ρ1 is a representation of E over A. By Equation(2.9), we have ρ1([(x1,a1),(x2,a2),(x3,a3)],(x4,a4))(1)x¯3x¯4ρ1((x3,a3),[(x1,a1),(x2,a2),(x4,a4)])=ρ1(([x1,x2,x3],ρ(x1,x2)a3(1)x¯2x¯3ρ(x1,x2)a3+(1)x¯1(x¯2+x¯3)ρ(x2,x3)a1),(x4,a4))(1)x¯3x¯4(ρ1((x3,a3),([x1,x2,x4],ρ(x1,x2)a4(1)x¯2x¯4ρ(x1,x2)a4+(1)x¯1(x¯2+x¯4)ρ(x2,x4)a1)))=ρ([x1,x2,x3],x4)(1)x¯3x¯4ρ(x3,[x1,x2,x4])=ρ(x1,x2)ρ(x3,x4)(1)(x¯1+x¯2)(x¯3+x¯4)ρ(x3,x4)ρ(x1,x2)=ρ1((x1,a1),(x2,a2))ρ1((x3,a3),(x4,a4))(1)(x¯1+x¯2)(x¯3+x¯4)ρ((x3,a3),(x4,a4))ρ((x1,a1),(x2,a2)).

Therefore, Equation(1.10) holds. Similarly, we can prove Equation(1.11). Then ρ1 is a representation of E over A. For all bH(A), we have [(x1,a1),(x2,a2),b(x3,a3)]1=[(x1,a1),(x2,a2),(bx3,ba3)]1=([x1,x2,bx3],ρ(x1,x2)(ba3)(1)x¯2x¯3ρ(x1,bx3)a2+(1)x¯1(x¯2+x¯3)ρ(x2,bx3)a1)=((1)b¯(x¯1+x¯2)b[x1,x2,x3]+ρ(x1,x2)bx3,ρ(x1,x2)(ba3)(1)x¯2x¯3ρ(x1,bx3)a2+(1)x¯1(x¯2+x¯3)ρ(x2,bx3)a1)=(1)b¯(x¯1+x¯2)b[(x1,a1),(x2,a2),(x3,a3)]+ρ1(x1,x2)b(x3,a3).

Moreover, we have ρ1(c(x,a),(y,b))=ρ1((cx,ca),(y,b))=ρ(cx,y)=(1)c¯x¯ρ(x,cy)=(1)c¯x¯ρ1((x,a),(cy,cb))=(1)c¯x¯ρ1((x,a),c(y,b)).

Similarly, we obtain ρ1(c(x,a),(y,b))=cρ1((x,a),(y,b)). Then (E,A,[·,·,·]1,ρ1) is a 3-Lie-Rinehart superalgebra. □

4. Cohomology and deformations of 3-Lie-Rinehart superalgebras

In this section, we study the notion of a module for a 3-Lie-Rinehart superalgebras and subsequently we introduce a cochain complex and cohomology of a 3-Lie-Rinehart superalgebras with coefficients in a module, then we study relations between 1 and 2 cocycles of a Lie-Rinehart superalgebra and the induced 3-Lie-Rinehart superalgebra. At the end of this section, we study the deformation of 3-Lie-Rinehart superalgebras

4.1. Representations and cohomology of 3-Lie-Rinehart superalgebras

Definition 3.1.

Let M be an A-module. and ψ:LLEnd(M) be an even linear map. The pair (M,ψ) is called a left module of the 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ) if the following conditions hold:

  1. ψ is a representation of (L,[·,·,·]) on M,

  2. ψ(a·x,y)=(1)a¯x¯ψ(x,a·y)=a·ψ(x,y), for all aH(A) and x,yH(L),

  3. ψ(x,y)(a·m)=(1)a¯(x¯+y¯)a·ψ(x,y)(m)+ρ(x,y)(a)m, for all x,yH(L),aH(A) and mM.

Example 3.2.

A is a left module over L since ρ is a representation of (L,[·,·,·]) over A and the other conditions are satisfied automatically by definition of the map ρ.

Example 3.3.

The pair (L, ad) is a left module over L, which is called the adjoint representation of (L,A,[·,·,·],ρ).

Proposition 3.4.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra. Then (M,ψ) is a left module over (L,A,[·,·,·],ρ) if and only if (LM,A,[·,·,·]LM,ρLM) is a 3-Lie-Rinehart superalgebra with the multiplication: [x1+m1,x2+m2,x3+m3]LM:=[x1,x2,x3]+ψ(x1,x2)m3+(1)x¯1(x¯2+x¯3)ψ(x2,x3)m1+(1)x¯2x¯3ψ(x3,x1)m2,ρLM:(LM)(LM)Der(A),ρLM(x1+m1,x2+m2):=ρ(x1,x2), for any x1,x2,x3H(L) and m1,m2,m3M. Note that (LM)0¯=L0¯M0¯, implying that if x+mH(LM), then x+m¯=x¯=m¯.

Proof.

Since L and M are A-modules, then LM is an A-module via a(x+m)=ax+am,aA,xL,mM.

If (M,ψ) is a left module over (L,A,[·,·,·],ρ). Then (LM,[·,·,·]LM) is a 3-Lie superalgebra. It is obvious that ρLM is a representation of the 3-Lie superalgebra (LM,[·,·,·]LM) over A.

For any x1,x2,x3H(L),m1,m2,m3H(M) and aH(A), [x1+m1,x2+m2,a(x3+m3)]LM=[x1+m1,x2+m2,ax3+am3]LM=[x1,x2,ax3]+ψ(x1,x2)am3+(1)x¯1(x¯2+x¯3)ψ(x2,ax3)m1+(1)x¯2x¯3ψ(ax3,x1)m2=(1)a¯(x¯1+x¯2)a[x1,x2,x3]+ψ(x1,x2)am3+(1)x¯1(x¯2+x¯3)ψ(x2,ax3)m1+(1)x¯2x¯3ψ(ax3,x1)m2+ρ(x1,x2)(am3)=(1)a¯(x¯1+x¯2)a([x1,x2,x3]+ψ(x1,x2)m3+(1)x¯1(x¯2+x¯3)ψ(x2,x3)m1+(1)x¯2x¯3ψ(x3,x1)m2)+ρ(x1,x2)(am3)=(1)a¯(x¯1+x¯2)a[x1+m1,x2+m2,x3+m3]LM+ρLM(x1+m1,x2+m2)a(x3+m3).

Moreover, ρLM(a(x1+m1),x2+m2)=ρLM(ax1+am1),x2+m2)=ρ(ax1,x2)=(1)a¯x¯1ρ(x1,ax2)=(1)a¯ x1+m1¯ρLM(x1+m1,ax2+am2)=(1)a¯ x1+m1¯ρLM(x1+m1,a(x2+m2)).

Similarly, we obtain ρLM(a(x1+m1),x2+m2)=aρLM(x1+m1,x2+m2). Therefore, (LM,A,[·,·,·]LM,ρLM) is a 3-Lie-Rinehart superalgebra. The sufficient condition can be done in the same way. □

Let (M,ψ) be a left module of the 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ) and Cn(L,M) the space of all linear maps f:2L2LLM satisfying the following conditions:

  1. f(x1,,xi,xi+1,,x2n,x2n+1)=(1)x¯ix¯i+1f(x1,,xi+1,xi,,x2n+1), for all xiH(L),1i2n+1,

  2. f(x1,···,a·xi,···,x2n+1)=(1)a¯(x¯1++x¯i1+f¯)af(x1,···,xi,···,x2n+1), for all xiH(L),1i2n+1 and aH(A).

Next we consider the Z+-graded space of K-modules C(L,M):=n0Cn(L,M).

Define the K-linear maps δ3LR:Cn1(L,M)Cn(L,M) by δ3LRf(x1,···,x2n+1)=(1)n+(f¯+x¯1+x¯2++x¯2n2)(x¯2n1+x¯2n+1)+x¯2n+1 x¯2nψ(x2n1,x2n+1)f(x1,···,x2n2,x2n)+(1)n+(f¯+x¯1+x¯2++x¯2n1)(x¯2n+x¯2n+1)ψ(x2n,x2n+1)f(x1,···,x2n1)+k=1n(1)k+(f¯+x¯1+x¯2++x¯2k2)(x¯2k1+x¯2k)ψ(x2k1,x2k)f(x1,···,x̂2k1,x̂2k,···,x2n+1)+k=1nj=2k+12n+1(1)k+(x¯2k+1++x¯j1)(x¯2k1+x¯2k)f(x1,···,x̂2k1,x̂2k,···,[x2k1,x2k,xj],···,x2n+1).

Proposition 3.5.

If fCn1(L,M), then δ3LRfCn(L,M) and δ3LR2=0.

Proof.

Let f be a homogenous element in Cn1(L,M), it is obvious that δ3LRf is skew-symmetric. For all x1,x2,,x2n+1H(L),aH(A) and for i<2n1, δ3LRf(x1,···,axi,···,x2n+1)=(1)n+(f¯+x¯1+x¯2++x¯2n2)(x¯2n1+x¯2n+1)+x¯2n+1 x¯2nψ(x2n1,x2n+1)f(x1,···,axi,···,x2n2,x2n)+(1)n+(f¯+x¯1+x¯2++x¯2n1)(x¯2n+x¯2n+1)ψ(x2n,x2n+1)f(x1,···,axi,···,x2n1)+k=1i<2k1n(1)k+(f¯+a¯+x¯1+x¯2++x¯2k2)(x¯2k1+x¯2k)ψ(x2k1,x2k)f(x1,···,axi,···,x̂2k1,x̂2k,···,x2n+1)+k=1i>2kn(1)k+(f¯+x¯1+x¯2++x¯2k2)(x¯2k1+x¯2k)ψ(x2k1,x2k)f(x1,···,x̂2k1,x̂2k,···,axi,···,x2n+1)+k=1n(1)k+(f¯+x¯1+x¯2++x¯2k2)(x¯2k1+a¯+x¯2k)ψ(ax2k1,x2k)f(x1,···,x̂2k1,x̂2k,···,x2n+1)+k=1n(1)k+(f¯+x¯1+x¯2++x¯2k2)(x¯2k1+a¯+x¯2k)ψ(x2k1,ax2k)f(x1,···,x̂2k1,x̂2k,···,x2n+1)+k=1i<2knj=2k+12n+1(1)k+(x¯2k+1++x¯j1)(x¯2k1+x¯2k)f(x1,···,axi,···,x̂2k1,x̂2k,···,[x2k1,x2k,xj],···,x2n+1)+k=1nj=2k+12k1<i<j2n+1(1)k+(a¯+x¯2k+1++x¯j1)(x¯2k1+x¯2k)f(x1,···,x̂2k1,x̂2k,···,axi,···,[x2k1,x2k,xj],···,x2n+1)+k=1nj=2k+1j<i2n+1(1)k+(x¯2k+1++x¯j1)(x¯2k1+x¯2k)f(x1,···,x̂2k1,x̂2k,···,[x2k1,x2k,xj],···,axi,···,x2n+1)+k=1nj=2k+12n+1(1)k+(x¯2k+1++x¯j1)(x¯2k1+a¯+x¯2k)f(x1,···,x̂2k1,x̂2k,···,[ax2k1,x2k,xj],···,x2n+1)+k=1nj=2k+12n+1(1)k+(x¯2k+1++x¯j1)(x¯2k1+a¯+x¯2k)f(x1,···,x̂2k1,x̂2k,···,[x2k1,ax2k,xj],···,x2n+1)+k=1nj=2k+12n+1(1)k+(x¯2k+1++x¯j1)(x¯2k1+x¯2k)f(x1,···,x̂2k1,x̂2k,···,[x2k1,x2k,axj],···,x2n+1).

Using Definition 3.1 and Equation(1.15), we obtain δ3LRf(x1,···,axi,···,x2n+1)=(1)a¯(x¯1++x¯i1+f¯)aδ3LRf(x1,···,xi,···,x2n+1).

Similarly, we can proof the same result if i=2n1,2n,2n+1. Then δ3LR is well-defined. Further, δ3LR2=0 follows from the direct but a long calculation. □

By the above proposition, (C(L,M),δ3LR) is a cochain complex. The resulting cohomology of the cochain complex can be defined as the cohomology space of 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ) with coefficients in (M,ψ), and we denote this cohomology as H(L,M).

Definition 3.6.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra and (M,ψ) be a left module over L. If νH3LR1(L,M) satisfies (1)ν¯(x¯1+x¯2)ψ(x1,x2)ν(x3)+(1)x¯2x¯3+ν¯(x¯2+x¯3)ψ(x1,x3)ν(x2)+(1)(x¯1+ν¯)(x¯2+x¯3)ψ(x2,x3)ν(x1)+ν([x1,x2,x3])=0, for any x1,x2,x3H(L), then ν is called a 1-cocycle associated with ψ.

Definition 3.7.

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra and (M,ψ) be a left module over L. If ωH3LR2(L,M) satisfies (1)(ω¯+x¯1+x¯2)(x¯3+x¯5)+x¯4x¯5ψ(x3,x5)ω(x1,x2,x4)+(1)(ω¯+x¯1+x¯2+x¯3)(x¯4+x¯5)ψ(x4,x5)ω(x1,x2,x3)(1)ω¯(x¯1+x¯2)ψ(x1,x2)ω(x3,x4,x5)+(1)(ω¯+x¯1+x¯2)(x¯3+x¯4)ψ(x3,x4)ω(x1,x2,x5)ω([x1,x2,x3],x4,x5)(1)x¯3(x¯1+x¯2)ω(x3,[x1,x2,x4],x5)(1)(x¯3+x¯4)(x¯1+x¯2)ω(x3,x4,[x1,x2,x5])+ω(x1,x2,[x3,x4,x5])=0, for any x1,x2,x3,x4,x5H(L), then ω is called a 2-cocycle associated with ψ.

Theorem 3.8.

Let (L,A,[·,·],μ) be a Lie-Rinehart superalgebra, τ be a supertrace and φZLR2(L,L) such that x,y,zH(L):τ(x)τ(φ(y,z))(1)x¯y¯τ(y)τ(φ(x,z))+(1)z¯(x¯+y¯)τ(z)τ(φ(x,y))=0.

Define the linear map ϕ:3LL by ϕ(x,y,z)=τ(x)φ(y,z)(1)x¯y¯τ(y)φ(x,z)+(1)z¯(x¯+y¯)τ(z)φ(x,y).

Then ϕ is a 2-cocycle of the induced 3-Lie-Rinehart superalgebra (L,A,[·,·,·]τ,ρτ).

Proof.

Let φZLR2(L,L). It is obvious that ϕ is skew-symmetric and ϕ¯=φ¯. If x,y,zH(L), then ϕ(ax,y,z)=τ(ax)φ(y,z)(1)x¯y¯τ(y)φ(ax,z)+(1)z¯(x¯+y¯)τ(z)φ(ax,y)=aτ(x)φ(y,z)(1)x¯y¯+a¯φ¯τ(y)aφ(x,z)+(1)z¯(x¯+y¯)+a¯φ¯τ(z)aφ(x,y))=(1)a¯φ¯a(τ(x)φ(y,z)(1)x¯y¯τ(y)φ(x,z)+(1)z¯(x¯+y¯)τ(z)φ(x,y))=(1)a¯ϕ¯aϕ(x,y,z).

Similarly, ϕ(x,ay,z)=(1)a¯(x¯+ϕ¯)aϕ(x,y,z) and ϕ(x,y,az)=(1)a¯(x¯+y¯+ϕ¯)aϕ(x,y,z). On the other hand, if x1,x2,y1,y2,zH(L), then δ3LRϕ(x1,x2,y1,y2,z)=ϕ(x1,x2,[y1,y2,z]τ)ϕ([x1,x2,y1]τ,y2,z)(1)y¯1(x¯1+x¯2)ϕ(y1,[x1,x2,y2]τ,z)(1)(y¯1+y¯2)(x¯1+x¯2)ϕ(y1,y2,[x1,x2,z]τ)+(1)(x¯1+x¯2)ϕ¯[x1,x2,ϕ(y1,y2,z)]τ[ϕ(x1,x2,y1),y2,z]τ(1)y¯1(x¯1+x¯2+ϕ¯)[y1,ϕ(x1,x2,y2),z]τ(1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)[y1,y2,ϕ(x1,x2,z)]τ=τ(y1)ϕ(x1,x2,[y2,z])(1)y¯1y¯2τ(y2)ϕ(x1,x2,[z,y1])+(1)z¯(y¯1+y¯2)τ(z)ϕ(x1,x2,[y1,y2])τ(x1)ϕ([x2,y1],y2,z)+(1)x¯1x¯2τ(x2)ϕ([x1,y1],y2,z)(1)y¯1(x¯1+x¯2)τ(y1)ϕ([x1,x2],y2,z)(1)y¯1(x¯1+x¯2)τ(x1)ϕ(y1,[x2,y2],z)+(1)y¯1(x¯1+x¯2)+x¯1x¯2τ(x2)ϕ(y1,[x1,y2],z)(1)(y¯1+y¯2)(x¯1+x¯2)τ(y2)ϕ(y1,[x1,x2],z)(1)(y¯1+y¯2)(x¯1+x¯2)τ(x1)ϕ(y1,y2,[x2,z])+(1)(y¯1+y¯2)(x¯1+x¯2)+x¯1x¯2τ(x2)ϕ(y1,y2,[x1,z])(1)(z¯+y¯1+y¯2)(x¯1+x¯2)τ(z)ϕ(y1,y2,[x1,x2])+(1)ϕ¯(x¯1+x¯2)τ(x1)[x2,ϕ(y1,y2,z)](1)ϕ¯(x¯1+x¯2)+x¯1x¯2τ(x2)[x1,ϕ(y1,y2,z)]+(1)(x¯1+x¯2)(y¯1+y¯2+z¯)τ(ϕ(y1,y2,z))[x1,x2]τ(ϕ(x1,x2,y1))[y2,z]+(1)y¯2(x¯1+x¯2+y¯1+ϕ¯)τ(y2)[ϕ(x1,x2,y1),z](1)z¯(x¯1+x¯2+y¯1+y¯2+ϕ¯)τ(z)[ϕ(x1,x2,y1),y2](1)y¯1(x¯1+x¯2+ϕ¯)τ(y1)[ϕ(x1,x2,y2),z]+(1)y¯1y¯2τ(ϕ(x1,x2,y2))[y1,z] (1)(y¯1+z¯)(x¯1+x¯2+ϕ¯)+z¯(y¯1+y¯2)τ(z)[y1,ϕ(x1,x2,y2)](1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)τ(y1)[y2,ϕ(x1,x2,z)]+(1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)+y¯1y¯2τ(y2)[y1,ϕ(x1,x2,z)](1)z¯(y¯1+y¯2)τ(ϕ(x1,x2,z))[y1,y2]=τ(y1)(τ(x1)φ(x2,[y2,z])(1)x¯1x¯2τ(x2)φ(x1,[y2,z])+(1)(y¯1+y¯2)(x¯1+x¯2)τ(y2)φ([x1,x2],z).(1)(y¯1+z¯)(x¯1+x¯2)+z¯y¯2τ(z)φ([x1,x2],y2)(1)y¯1(x¯1+x¯2+ϕ¯)τ(x1)[φ(x2,y2),z]+(1)y¯1(x¯1+x¯2+ϕ¯)+x¯1x¯2τ(x2)[φ(x1,y2),z](1)y¯1(x¯1+x¯2+ϕ¯)+y¯2(x¯1+x¯2)τ(y2)[φ(x1,x2),z](1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)τ(x1)[y2,φ(x2,z)]+(1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)τ(x1)[y2,φ(x2,z)](1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)+z¯(x¯1+x¯2)τ(z)[y2,φ(x1,x2)])(1)y¯1y¯2τ(y2)(τ(x1)φ(x2,[y1,z])(1)x¯1x¯2τ(x2)φ(x1,[y1,z])+(1)(y¯1+y¯2)(x¯1+x¯2)+y¯1y¯2τ(y1)φ([x1,x2],z)+(1)(y¯1+y¯2+z¯)(x¯1+x¯2)+y¯2(y¯1+z¯)τ(z)φ(y1,[x1,x2]) (1)y¯2(x¯1+x¯2+ϕ¯)τ(x1)[φ(x2,y1),z]+(1)y¯2(x¯1+x¯2+ϕ¯)+x¯1x¯2τ(x2)[φ(x1,y1),z](1)(y¯1+y¯2)(x¯1+x¯2)+y¯2ϕ¯τ(y1)[φ(x1,x2),z](1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)τ(x1)[y1,φ(x2,z)]+(1)(y¯1+y¯2)(x¯1+x¯2+ϕ¯)+x¯1x¯2τ(x2)[y1,φ(x1,z)](1)(y¯1+y¯2+z¯)(x¯1+x¯2)+(y¯1+y¯2)ϕ¯τ(z)[y1,φ(x1,x2)])+(1)z¯(y¯1+y¯2)τ(z)(τ(x1)φ(x2,[y1,y2])(1)x¯1x¯2τ(x2)φ(x1,[y1,y2])(1)(z¯+y¯1+y¯2)(x¯1+x¯2+z¯)τ(y1)φ(y2,[x1,x2])+(1)(z¯+y¯1+y¯2)(x¯1+x¯2+z¯)+y¯1y¯2τ(y2)φ(y1,[x1,x2])(1)z¯(x¯1+x¯2+y¯1+y¯2+ϕ¯)τ(x1)[φ(x2,y1),y2]+(1)z¯(x¯1+x¯2+y¯1+y¯2+ϕ¯)+x¯1x¯2τ(x2)[φ(x1,y1),y2](1)z¯(x¯1+x¯2+y¯1+y¯2+ϕ¯)+y¯1(x¯1+x¯2)τ(y1)[φ(x1,x2),y2]+(1)(y¯1+z¯)(x¯1+x¯2+ϕ¯)+z¯(y¯1+y¯2)τ(x1)[y1,φ(x2,y2)](1)(y¯1+z¯)(x¯1+x¯2+ϕ¯)+z¯(y¯1+y¯2)+x¯1+x¯2τ(x2)[y1,φ(x1,y2)]+(1)(y¯1+y¯2+z¯)(x¯1+x¯2+ϕ¯)+z¯(y¯1+y¯2)+y¯2ϕ¯τ(y2)[y1,φ(x1,x2)])+τ(x1)((1)y¯2(x¯2+y¯1)τ(y2)φ([x2,y1],z)(1)z¯(y¯1+y¯2+x¯2)τ(z)φ([x2,y1],y2)(1)y¯1(x¯1+x¯2)τ(y1)φ([x2,y2],z)(1)y¯1(x¯1+x¯2)+z¯(y¯1+y¯2+x¯2)τ(z)φ(y1,[x2,y2]) (1)(y¯1+y¯2)(x¯1+x¯2)τ(y1)φ(y2,[x2,z])+(1)(y¯1+y¯2)(x¯1+x¯2)+y¯1y¯2τ(x2)φ(y1,[x2,z])+(1)(x¯1+x¯2)ϕ¯τ(y1)[x2,φ(y2,z)](1)(x¯1+x¯2)ϕ¯+y¯1y¯2τ(y2)[x2,φ(y1,z)]+(1)(x¯1+x¯2)ϕ¯+z¯(y¯2+y¯2)τ(z)[x2,φ(y1,y2)])+(1)x¯1x¯2τ(x2)((1)y¯2(x¯1+x¯2)τ(y2)φ([x1,y1],z)+(1)z¯(x¯1+y¯1+y¯2)τ(z)φ([x1,y1],y2)+(1)y¯1(x¯1+x¯2)τ(y1)φ([x1,y1],z)+(1)y¯1(x¯1+x¯2)+z¯(x¯1+y¯1+y¯2)τ(z)φ(y1,[x1,y2])+(1)(y¯1+y¯2)(x¯1+x¯2)τ(y1)φ(y2,[x1,z])(1)(y¯1+y¯2)(x¯1+x¯2)+y¯1y¯2τ(y2)φ(y1,[x1,z])(1)(x¯1+x¯2)ϕ¯τ(y1)[x1,φ(y1,z)]+(1)(x¯1+x¯2)ϕ¯+y¯1y¯2τ(y2)[x1,φ(y1,z)](1)(x¯1+x¯2)ϕ¯+z¯(y¯1+y¯2)τ(z)[x1,φ(y1,y2)]) +(1)(x¯1+x¯2)(y¯1+y¯2+z¯)(τ(y1)τ(φ(y2,z))(1)y¯1y¯2τ(y2)τ(φ(y1,z))+(1)z¯(y¯1+y¯2)τ(z)τ(φ(y1,y2)))[x1,x2](τ(x1)τ(φ(x2,y1))(1)x¯1x¯2τ(x2)τ(φ(x1,y1))+(1)y¯1(x¯1+x¯2)τ(y1)τ(φ(x1,x2)))[y2,z]+(1)y¯1y¯2(τ(x1)τ(φ(x2,y2))(1)x¯1x¯2τ(x2)τ(φ(x1,y2))+(1)y¯2(x¯1+x¯2)τ(y2)τ(φ(x1,x2)))[y1,z](1)z¯(y¯1+y¯2)(τ(x1)τ(φ(x2,z))(1)x¯1x¯2τ(x2)τ(φ(x1,z))+(1)z¯(x¯1+x¯2)τ(z)τ(φ(x1,x2)))[y1,y2]=τ(y1)τ(x1)δLRφ(z,y2,x2)τ(y1)τ(x2)δLRφ(y2,z,x1)τ(y2)τ(x1)δLRφ(y1,z,x2)τ(y2)τ(x2)δLRφ(z,y1,x1)τ(z)τ(x1)δLRφ(y2,y1,x2)τ(z)τ(x2)δLRφ(y1,y2,x1)+(1)(x¯1+x¯2)(y¯1+y¯2+z¯)(τ(y1)τ(φ(y2,z))(1)y¯1y¯2τ(y2)τ(φ(y1,z))+(1)z¯(y¯1+y¯2)τ(z)τ(φ(y1,y2)))[x1,x2](τ(x1)τ(φ(x2,y1))(1)x¯1x¯2τ(x2)τ(φ(x1,y1))+(1)y¯1(x¯1+x¯2)τ(y1)τ(φ(x1,x2)))[y2,z]+(1)y¯1y¯2(τ(x1)τ(φ(x2,y2))(1)x¯1x¯2τ(x2)τ(φ(x1,y2))+(1)y¯2(x¯1+x¯2)τ(y2)τ(φ(x1,x2)))[y1,z](1)z¯(y¯1+y¯2)(τ(x1)τ(φ(x2,z))(1)x¯1x¯2τ(x2)τ(φ(x1,z))+(1)z¯(x¯1+x¯2)τ(z)τ(φ(x1,x2)))[y1,y2].

Since for all x,y,zH(L), τ(x)τ(φ(y,z))(1)x¯y¯τ(y)τ(φ(x,z))+(1)z¯(x¯+y¯)τ(z)τ(φ(x,y))=0, we get δ3LRϕ=0.

Corollary 3.9.

Let φZLR2(L,K). Then ψ(x,y,z)=τ(x)φ(y,z)(1)x¯y¯τ(y)φ(x,z)+(1)z¯(x¯+y¯)τ(z)φ(x,y) is a 2-cocycle of the induced 3-Lie-Rinehart superalgebra.

Theorem 3.10.

Every 1-cocycle for the scalar cohomology of the Lie-Rinehart superalgebra (L,A,[·,·],μ) is a 1-cocycle for the scalar cohomology of the induced 3-Lie-Rinehart superalgebra (L,A,[·,·,·]τ,ρτ).

Proof.

Let ωZLR1(L,K). Then, x,yL:δLRω(x,y)=ω([x,y])=0, which is equivalent to [L,L]kerω. It is obvious to prove that [L,L,L]τ[L,L] and then [L,L,L]τkerω, that is x,y,zL:ω([x,y,z]τ)=δ3LRω(x,y,z)=0, which means that ω is a 1-cocycle for the scalar cohomology of (L,A,[·,·,·]τ,ρτ).

Lemma 3.11.

Let φC1(L,K). Then, for all x,y,zH(L), δ3LRφ(x,y,z)=τ(x)δLRφ(y,z)(1)x¯y¯τ(y)δLRφ(x,z)+(1)z¯(x¯+y¯)τ(z)δLRφ(x,y).

Proof.

Let φC1(L,K),x,y,zH(L). Then, δ3LRφ(x,y,z)=φ([x,y,z]τ)=τ(x)φ([y,z])(1)x¯y¯τ(y)φ([x,z])+(1)z¯(x¯+y¯)τ(z)φ([x,y])=τ(x)δLRφ(y,z)(1)x¯y¯τ(y)δLRφ(x,z)+(1)z¯(x¯+y¯)τ(z)δLRφ(x,y) completes the proof. □

Proposition 3.12.

Let φ1,φ2ZLR2(L,K). If φ1,φ2 are in the same cohomology class then ψ1,ψ2 defined by ψi(x,y,z)=τ(x)φi(y,z)(1)x¯y¯τ(y)φi(x,z)+(1)z¯(x¯+y¯)τ(z)φi(x,y),i=1,2 are in the same cohomology class.

Proof.

If φ1,φ2ZLR2(L,K) are two cocycles in the same cohomology class, that is φ2φ1=δLRν,νC1(L,K), then ψ2(x,y,z)ψ1(x,y,z)=τ(x)φ2(y,z)(1)x¯y¯τ(y)φ2(x,z)+(1)z¯(x¯+y¯)τ(z)φ2(x,y)τ(x)φ1(y,z)(1)x¯y¯τ(y)φ1(x,z)+(1)z¯(x¯+y¯)τ(z)φ1(x,y)=τ(x)(φ2φ1)(y,z)(1)x¯y¯τ(y)(φ2φ1)(x,z)+(1)z¯(x¯+y¯)τ(z)(φ2φ1)(x,y)=τ(x)δLRν(y,z)(1)x¯y¯τ(y)δLRν(x,z)+(1)z¯(x¯+y¯)τ(z)δLRν(x,y)=δ3LRν(x,y,z), which means that ψ1 and ψ2 are in the same cohomology class. □

4.2. Deformations of 3-Lie-Rinehart superalgebras

Let (L,A,[·,·,·],ρ) be a 3-Lie-Rinehart superalgebra. Denote by K[[t]] the space of formal power series ring with parameter t.

Definition 3.13.

A deformation of a 3-Lie-Rinehart superalgebra (L,A,[·,·,·],ρ) is a K[[t]]-trilinear map [·,·,·]t:L[[t]]×L[[t]]×L[[t]]L[[t]],[x,y,z]t=i0timi(x,y,z), where m0=[·,·,·] and mi are even trilinear maps for i0, satisfying Equation(1.5), Equation(1.6), Equation(1.14) and Equation(1.15).

Let [·,·,·]t be a deformation of [·,·,·]. Then mt(x,y,mt(z,u,v))mt(mt(x,y,u),v,w)(1)u¯(x¯+y¯)mt(u,mt(x,y,v),w)(1)(u¯+v¯)(x¯+y¯)mt(u,v,mt(x,y,w))=0.

Comparing the coefficients of tn, n0, we get the following equation: i,j=0n(mi(x,y,mj(z,u,v))mi(mj(x,y,u),v,w)(1)u¯(x¯+y¯)mi(u,mj(x,y,v),w)(1)(u¯+v¯)(x¯+y¯)mi(u,v,mj(x,y,w)))=0.

Definition 3.14.

The 3-cochain m1 is called the infinitesimal of the deformation [·,·,·]t. More generally, if mi = 0 for 1i(n1) and mn is non zero cochain, then mn is called the n-infinitesimal of the deformation [·,·,·]t.

Definition 3.15.

Two deformations [·,·,·]t and [·,·,·]t are said to be equivalent if there exists a formal automorphism Φt:L[[t]]L[[t]],   Φt=idL+i1tiϕi, where ϕi:LL is an even K-linear maps such that [x,y,z]t=Φt1[Φt(x),Φt(y),Φt(z)]t.

Definition 3.16.

A deformation is called trivial if it is equivalent to the deformation m0=[·,·,·].

Definition 3.17.

A 3-Lie-Rinehart superalgebra is said to be rigid if every deformation of it is trivial.

Theorem 3.18.

The cohomology class of the infinitesimal of a deformation [·,·,·]t is determined by the equivalence class of [·,·,·]t.

Proof.

Let Φt represents an equivalence of deformation given by mt and mt˜. Then mt˜(x,y,z)=Φt1mt(Φt(x),Φt(y),Φt(z)).

Comparing the coefficients of t from both sides of the above equation we have m1˜(x,y,z)+Φ1([x,y,z])=m1(x,y,z)+[Φ1(x),y,z]+(1)x¯Φ¯[x,Φ1(y),z]+(1)(x¯+y¯)Φ¯[x,y,Φ1(z)], or equivalently, m1m1˜=δ3LR(ϕ1). So, cohomology class of infinitesimal of the deformation is determined by the equivalence class of deformation of mt.

Theorem 3.19.

A non-trivial deformation of a 3-Lie-Rinehart superalgebra is equivalent to a deformation whose n-infinitesimal cochain is not a coboundary for some n1.

Proof.

Let mt be a deformation of 3-Lie-Rinehart superalgebra with n-infinitesimal mn for some n1. Assume that there exists a 3-cochain ϕC2(L,L) with δ(ϕ)=mn. Set Φt=idL+ϕtn and m˜=Φt1°mt°Φt. Comparing the coefficients of tn, we get the following equation: m˜nmn=δ3LR(ϕ).

So m˜n=0. Then, one has the deformation whose n-infinitesimal is not a coboundary for some n1.

Acknowlegments

Dr. Sami Mabrouk is grateful to the research environment in Mathematics and Applied Mathematics MAM, Division of Applied Mathematics and Physics, School of Education, Culture and Communication, Mälardalen University for hospitality and excellent and inspiring environment for research cooperation in Mathematics during his visit in 2019. Partial support from Swedish Royal Academy of Sciences foundations is also gratefully acknowledged.

References

  • Abramov, V. (2017). Super 3-Lie algebras induced by super Lie algebras. Adv. Appl. Clifford Algebras 27(1):9–16. DOI: 10.1007/s00006-015-0604-3.
  • Abramov, V. (2019). 3-Lie superalgebras induced by Lie superalgebras. Axioms. 8(1):21. DOI: 10.3390/axioms8010021.
  • Abramov, V. (2020). Weil algebra, 3-Lie algebra and B.R.S. algebra. In: Silvestrov, S., Malyarenko, A., Rancic, M., eds. Algebraic Structures and Applications. Springer Proceedings in Mathematics and Statistics, Vol. 317, Ch 1. Cham: Springer, pp. 1–12.
  • Abramov, V., Lätt, P. (2016). Classification of low dimensional 3-Lie superalgebras. In: Silvestrov S., Rancic M., eds. Engineering Mathematics II. Springer Proceedings in Mathematics and Statistics, Vol. 179. Cham: Springer, pp. 1–12.
  • Abramov, V., Lätt, P. (2020). Ternary Lie superalgebras and Nambu-Hamilton equation in superspace. In: Silvestrov S., Malyarenko A., Rancić, M., eds. Algebraic Structures and Applications. Springer Proceedings in Mathematics and Statistics, Vol. 317, Ch 3. Springer, pp. 47–80.
  • Abramov, V., Silvestrov, S. (2020). 3-Hom-Lie algebras based on σ-derivation and involution. Adv. Appl. Clifford Algebras 30(3):45. DOI: 10.1007/s00006-020-01068-6.
  • Arnlind, J., Kitouni, A., Makhlouf, A., Silvestrov, S. (2014). Structure and cohomology of 3-Lie algebras induced by Lie algebras. In: Makhlouf, A., Paal, E., Silvestrov, S. D., Stolin, A., eds. Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics and Statistics, Vol. 85, Berlin, Heidelberg: Springer, pp. 123–144.
  • Arnlind, J., Makhlouf, A., Silvestrov, S. (2010). Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras. J. Math. Phys. 51(4):043515. DOI: 10.1063/1.3359004.
  • Arnlind, J., Makhlouf, A., Silvestrov, S. (2011). Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras. J. Math. Phys. 52(12):123502–123513. DOI: 10.1063/1.3653197.
  • Albuquerque, H., Barreiro, E., Calderón, A. J., Sánchez, J. M. (2020) Split Lie-Rinehart algebras. J. Algebra Appl. DOI: 10.1142/S0219498821501644.
  • Awata, H., Li, M., Minic, D., Yoneya, T. (2001). On the quantization of Nambu brackets. J. High Energy Phys. 2001(02):013–017. DOI: 10.1088/1126-6708/2001/02/013.
  • Bai, R., Li, X., Wu, Y. (2019). 3-Lie-Rinehart algebras. arXiv:1903.12283v1.
  • Bai, R., Li, X., Wu, Y. (2020). Hom 3-Lie-Rinehart algebras. arXiv:2001.07570.
  • Bai, R., Bai, C., Wang, J. (2010). Realizations of 3-Lie algebras. J. Math. Phys. 51(6):063505. DOI: 10.1063/1.3436555.
  • Bai, R., Wu, Y. (2015). Constructions of 3-Lie algebras. Lin. Multilin. Alg. 63(11):2171–2186. DOI: 10.1080/03081087.2014.986121.
  • Bai, R., Li, Z., Wang, W. (2017). Infnite-dimensional 3-Lie algebras and their connections to Harish-Chandra module. Front. Math. China 12(3):515–530. DOI: 10.1007/s11464-017-0606-7.
  • Ben Hassine, A., Mabrouk, S., Ncib, O. (2019). Some constructions of multiplicative n-ary Hom-Nambu algebras. Adv. Appl. Clifford Algebras 29(5):88. DOI: 10.1007/s00006-019-0996-6.
  • Ben Hassine, A., Chtioui, T., Elhamdadi, M., Mabrouk, S. (2021). Extensions and crossed modules of n-Lie Rinehart algebras. arXiv:2103.15006.
  • Bkouche, R. (1966). Structures (K, A)-linéaires. C. R. Acad. Sci. Paris Sér. A-B. 262:A373–A376. (in French)
  • Calderon Martin, A. J., Forero Piulestan, M. (2011). Split 3-Lie algebras. J. Math. Phys. 52(12):123503.
  • Cantarini, N., Kac, V. G. (2010). Classification of simple linearly compact n-Lie superalgebras. Commun. Math. Phys. 298(3):833–853. DOI: 10.1007/s00220-010-1049-0.
  • Casas, J. M. (2011). Obstructions to Lie-Rinehart algebra extensions. Algebra Colloq. 18(01):83–104. DOI: 10.1142/S1005386711000046.
  • Casas, J. M., Ladra, M., Pirashvili, T. (2004). Crossed modules for Lie-Rinehart algebras. J. Algebra 274(1):192–201. DOI: 10.1016/j.jalgebra.2003.10.001.
  • Casas, J. M., Ladra, M., Pirashvili, T. (2005). Triple cohomology of Lie-Rinehart algebras and the canonical class of associative algebras J. Algebra 291(1):144–163. DOI: 10.1016/j.jalgebra.2005.05.018.
  • Chemla, S. (1995). Operations for modules on Lie-Rinehart superalgebras. Manuscripta Math. 87(1):199–224. DOI: 10.1007/BF02570471.
  • Chen, Z., Liu, Z., Zhong, D. (2011). Lie-Rinehart bialgebras for crossed products. J. Pure Appl. Algebra 215(6):1270–1283. DOI: 10.1016/j.jpaa.2010.08.011.
  • Dokas, I. (2012). Cohomology of restricted Lie-Rinehart algebras. Adv. Math. 231(5):2573–2592. DOI: 10.1016/j.aim.2012.08.003.
  • Daletskii, Y. L., Kushnirevich, V. A. (1996). Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry. Dopov. Akad. Nauk Ukr. 4:12–18.
  • Filippov, V. (1985). n-Lie algebras. Sib. Mat. Zh. 26:126–140.
  • Guan, B., Chen, L., Sun, B. (2017). 3-ary Hom-Lie superalgebras induced by Hom-Lie superalgebras. Adv. Appl. Clifford Algebras 27(4):3063–3082. DOI: 10.1007/s00006-017-0801-3.
  • Guo, S., Zhang, X., Wang, S. (2019). On 3-Hom-Lie-Rinehart algebras. arXiv:1911.10992.
  • Herz, J. (1953). Pseudo-algebras de Lie. I, II. C. R. Acad. Sci. Paris. 236:2289–2291, 1935-1937.
  • Higgins, P. J., Mackenzie, K. (1990). Algebraic constructions in the category of Lie algebroids. J. Algebra 129(1):194–230. DOI: 10.1016/0021-8693(90)90246-K.
  • Huebschmann, J. (1990). Poisson cohomology and quantization. J. Reine Angew. Math. 408:57–113.
  • Huebschmann, J. (1998). Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Ann. Inst. Fourier (Grenoble). 48(2):425–440. DOI: 10.5802/aif.1624.
  • Huebschmann, J. (1999). Duality for Lie-Rinehart algebras and the modular class. J. Reine Angew. Math. 1999(510):103–159. DOI: 10.1515/crll.1999.043.
  • Huebschmann, J. (2004). Lie-Rinehart algebras, descent, and quantization. In: Galois Theory, Hopf Algebras, and Semiabelian Categories, (Fields Institute Communications), Vol. 43. Providence, RI: American Mathematical Society, pp. 295–316.
  • Huebschmann, J., Perlmutter, M., Ratiu, T. S. (2013). Extensions of Lie-Rinehart algebras and cotangent bundle reduction. Proc. Lond. Math. Soc. 107(5):1135–1172. DOI: 10.1112/plms/pdt030.
  • Huebschmann, J. (2017). Multi derivation Maurer-Cartan algebras and sh Lie-Rinehart algebras. J. Algebra 472:437–479. DOI: 10.1016/j.jalgebra.2016.10.008.
  • Krahmer, U., Rovi, A. (2015). A Lie-Rinehart algebra with no antipode. Commun. Algebra 43(10):4049–4053. DOI: 10.1080/00927872.2014.896375.
  • Kac, V. G. (1977). A sketch of Lie superalgebra theory. Commun. Math. Phys. 52(1):31–64. DOI: 10.1007/BF01609166.
  • Kitouni, A., Makhlouf, A., Silvestrov, S. (2016). On (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras. Georgian Math. J. 23(1):75–95.
  • Kitouni, A., Makhlouf, A., Silvestrov, S. (2020). On solvability and nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras. In: Silvestrov, S., Malyarenko, A., Rancic, M., eds. Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, Vol 317, Ch 6, Cham: Springer, pp. 127–157.
  • Mackenzie, K. (1987). Lie groupoids and Lie algebroids in differential geometry. London Math. Soc. Lecture Note Series 124, Cambridge: Cambridge University Press.
  • Mackenzie, K. C. H. (1995). Lie algebroids and Lie pseudoalgebras. Bull. London Math. Soc. 27(2):97–147. DOI: 10.1112/blms/27.2.97.
  • Mandal, A., Mishra, S. K. (2018). Hom-Lie-Rinehart algebras. Commun. Algebra 46(9):3722–3744. DOI: 10.1080/00927872.2018.1424865.
  • Mandal, A., Mishra, S. K. (2018). On hom-Gerstenhaber algebras, and hom-Lie algebroids. J. Geom. Phys. 133:287–302. DOI: 10.1016/j.geomphys.2018.07.018.
  • Mishra, S. K., Silvestrov, S. (2020). A review on Hom-Gerstenhaber algebras and Hom-Lie algebroids. In: Silvestrov S., Malyarenko A., Rancić, M., eds. Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, Vol. 317, Ch 11. Cham: Springer, pp. 285–315.
  • Palais, R. (1961). The cohomology of Lie rings. Proc. Symp. Pure Math., Amer. Math. Soc. Providence, R. I., pp. 130–137
  • Rinehart, G. (1963). Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108(2):195–222. DOI: 10.1090/S0002-9947-1963-0154906-3.
  • Rota, G. (1969). Baxter algebras and combinatorial identities I, II. Bull. Amer. Math. Soc. 75(2):330–334. DOI: 10.1090/S0002-9904-1969-12156-7.
  • Takhtajan, L. (1994). On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160(2):295–315. DOI: 10.1007/BF02103278.