945
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Structure and cohomology of 3-Lie-Rinehart superalgebras

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4883-4904 | Received 24 Dec 2020, Accepted 07 May 2021, Published online: 22 Jul 2021

References

  • Abramov, V. (2017). Super 3-Lie algebras induced by super Lie algebras. Adv. Appl. Clifford Algebras 27(1):9–16. DOI: 10.1007/s00006-015-0604-3.
  • Abramov, V. (2019). 3-Lie superalgebras induced by Lie superalgebras. Axioms. 8(1):21. DOI: 10.3390/axioms8010021.
  • Abramov, V. (2020). Weil algebra, 3-Lie algebra and B.R.S. algebra. In: Silvestrov, S., Malyarenko, A., Rancic, M., eds. Algebraic Structures and Applications. Springer Proceedings in Mathematics and Statistics, Vol. 317, Ch 1. Cham: Springer, pp. 1–12.
  • Abramov, V., Lätt, P. (2016). Classification of low dimensional 3-Lie superalgebras. In: Silvestrov S., Rancic M., eds. Engineering Mathematics II. Springer Proceedings in Mathematics and Statistics, Vol. 179. Cham: Springer, pp. 1–12.
  • Abramov, V., Lätt, P. (2020). Ternary Lie superalgebras and Nambu-Hamilton equation in superspace. In: Silvestrov S., Malyarenko A., Rancić, M., eds. Algebraic Structures and Applications. Springer Proceedings in Mathematics and Statistics, Vol. 317, Ch 3. Springer, pp. 47–80.
  • Abramov, V., Silvestrov, S. (2020). 3-Hom-Lie algebras based on σ-derivation and involution. Adv. Appl. Clifford Algebras 30(3):45. DOI: 10.1007/s00006-020-01068-6.
  • Arnlind, J., Kitouni, A., Makhlouf, A., Silvestrov, S. (2014). Structure and cohomology of 3-Lie algebras induced by Lie algebras. In: Makhlouf, A., Paal, E., Silvestrov, S. D., Stolin, A., eds. Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics and Statistics, Vol. 85, Berlin, Heidelberg: Springer, pp. 123–144.
  • Arnlind, J., Makhlouf, A., Silvestrov, S. (2010). Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras. J. Math. Phys. 51(4):043515. DOI: 10.1063/1.3359004.
  • Arnlind, J., Makhlouf, A., Silvestrov, S. (2011). Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras. J. Math. Phys. 52(12):123502–123513. DOI: 10.1063/1.3653197.
  • Albuquerque, H., Barreiro, E., Calderón, A. J., Sánchez, J. M. (2020) Split Lie-Rinehart algebras. J. Algebra Appl. DOI: 10.1142/S0219498821501644.
  • Awata, H., Li, M., Minic, D., Yoneya, T. (2001). On the quantization of Nambu brackets. J. High Energy Phys. 2001(02):013–017. DOI: 10.1088/1126-6708/2001/02/013.
  • Bai, R., Li, X., Wu, Y. (2019). 3-Lie-Rinehart algebras. arXiv:1903.12283v1.
  • Bai, R., Li, X., Wu, Y. (2020). Hom 3-Lie-Rinehart algebras. arXiv:2001.07570.
  • Bai, R., Bai, C., Wang, J. (2010). Realizations of 3-Lie algebras. J. Math. Phys. 51(6):063505. DOI: 10.1063/1.3436555.
  • Bai, R., Wu, Y. (2015). Constructions of 3-Lie algebras. Lin. Multilin. Alg. 63(11):2171–2186. DOI: 10.1080/03081087.2014.986121.
  • Bai, R., Li, Z., Wang, W. (2017). Infnite-dimensional 3-Lie algebras and their connections to Harish-Chandra module. Front. Math. China 12(3):515–530. DOI: 10.1007/s11464-017-0606-7.
  • Ben Hassine, A., Mabrouk, S., Ncib, O. (2019). Some constructions of multiplicative n-ary Hom-Nambu algebras. Adv. Appl. Clifford Algebras 29(5):88. DOI: 10.1007/s00006-019-0996-6.
  • Ben Hassine, A., Chtioui, T., Elhamdadi, M., Mabrouk, S. (2021). Extensions and crossed modules of n-Lie Rinehart algebras. arXiv:2103.15006.
  • Bkouche, R. (1966). Structures (K, A)-linéaires. C. R. Acad. Sci. Paris Sér. A-B. 262:A373–A376. (in French)
  • Calderon Martin, A. J., Forero Piulestan, M. (2011). Split 3-Lie algebras. J. Math. Phys. 52(12):123503.
  • Cantarini, N., Kac, V. G. (2010). Classification of simple linearly compact n-Lie superalgebras. Commun. Math. Phys. 298(3):833–853. DOI: 10.1007/s00220-010-1049-0.
  • Casas, J. M. (2011). Obstructions to Lie-Rinehart algebra extensions. Algebra Colloq. 18(01):83–104. DOI: 10.1142/S1005386711000046.
  • Casas, J. M., Ladra, M., Pirashvili, T. (2004). Crossed modules for Lie-Rinehart algebras. J. Algebra 274(1):192–201. DOI: 10.1016/j.jalgebra.2003.10.001.
  • Casas, J. M., Ladra, M., Pirashvili, T. (2005). Triple cohomology of Lie-Rinehart algebras and the canonical class of associative algebras J. Algebra 291(1):144–163. DOI: 10.1016/j.jalgebra.2005.05.018.
  • Chemla, S. (1995). Operations for modules on Lie-Rinehart superalgebras. Manuscripta Math. 87(1):199–224. DOI: 10.1007/BF02570471.
  • Chen, Z., Liu, Z., Zhong, D. (2011). Lie-Rinehart bialgebras for crossed products. J. Pure Appl. Algebra 215(6):1270–1283. DOI: 10.1016/j.jpaa.2010.08.011.
  • Dokas, I. (2012). Cohomology of restricted Lie-Rinehart algebras. Adv. Math. 231(5):2573–2592. DOI: 10.1016/j.aim.2012.08.003.
  • Daletskii, Y. L., Kushnirevich, V. A. (1996). Inclusion of the Nambu-Takhtajan algebra in the structure of formal differential geometry. Dopov. Akad. Nauk Ukr. 4:12–18.
  • Filippov, V. (1985). n-Lie algebras. Sib. Mat. Zh. 26:126–140.
  • Guan, B., Chen, L., Sun, B. (2017). 3-ary Hom-Lie superalgebras induced by Hom-Lie superalgebras. Adv. Appl. Clifford Algebras 27(4):3063–3082. DOI: 10.1007/s00006-017-0801-3.
  • Guo, S., Zhang, X., Wang, S. (2019). On 3-Hom-Lie-Rinehart algebras. arXiv:1911.10992.
  • Herz, J. (1953). Pseudo-algebras de Lie. I, II. C. R. Acad. Sci. Paris. 236:2289–2291, 1935-1937.
  • Higgins, P. J., Mackenzie, K. (1990). Algebraic constructions in the category of Lie algebroids. J. Algebra 129(1):194–230. DOI: 10.1016/0021-8693(90)90246-K.
  • Huebschmann, J. (1990). Poisson cohomology and quantization. J. Reine Angew. Math. 408:57–113.
  • Huebschmann, J. (1998). Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras. Ann. Inst. Fourier (Grenoble). 48(2):425–440. DOI: 10.5802/aif.1624.
  • Huebschmann, J. (1999). Duality for Lie-Rinehart algebras and the modular class. J. Reine Angew. Math. 1999(510):103–159. DOI: 10.1515/crll.1999.043.
  • Huebschmann, J. (2004). Lie-Rinehart algebras, descent, and quantization. In: Galois Theory, Hopf Algebras, and Semiabelian Categories, (Fields Institute Communications), Vol. 43. Providence, RI: American Mathematical Society, pp. 295–316.
  • Huebschmann, J., Perlmutter, M., Ratiu, T. S. (2013). Extensions of Lie-Rinehart algebras and cotangent bundle reduction. Proc. Lond. Math. Soc. 107(5):1135–1172. DOI: 10.1112/plms/pdt030.
  • Huebschmann, J. (2017). Multi derivation Maurer-Cartan algebras and sh Lie-Rinehart algebras. J. Algebra 472:437–479. DOI: 10.1016/j.jalgebra.2016.10.008.
  • Krahmer, U., Rovi, A. (2015). A Lie-Rinehart algebra with no antipode. Commun. Algebra 43(10):4049–4053. DOI: 10.1080/00927872.2014.896375.
  • Kac, V. G. (1977). A sketch of Lie superalgebra theory. Commun. Math. Phys. 52(1):31–64. DOI: 10.1007/BF01609166.
  • Kitouni, A., Makhlouf, A., Silvestrov, S. (2016). On (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras. Georgian Math. J. 23(1):75–95.
  • Kitouni, A., Makhlouf, A., Silvestrov, S. (2020). On solvability and nilpotency for n-Hom-Lie algebras and (n + 1)-Hom-Lie algebras induced by n-Hom-Lie algebras. In: Silvestrov, S., Malyarenko, A., Rancic, M., eds. Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, Vol 317, Ch 6, Cham: Springer, pp. 127–157.
  • Mackenzie, K. (1987). Lie groupoids and Lie algebroids in differential geometry. London Math. Soc. Lecture Note Series 124, Cambridge: Cambridge University Press.
  • Mackenzie, K. C. H. (1995). Lie algebroids and Lie pseudoalgebras. Bull. London Math. Soc. 27(2):97–147. DOI: 10.1112/blms/27.2.97.
  • Mandal, A., Mishra, S. K. (2018). Hom-Lie-Rinehart algebras. Commun. Algebra 46(9):3722–3744. DOI: 10.1080/00927872.2018.1424865.
  • Mandal, A., Mishra, S. K. (2018). On hom-Gerstenhaber algebras, and hom-Lie algebroids. J. Geom. Phys. 133:287–302. DOI: 10.1016/j.geomphys.2018.07.018.
  • Mishra, S. K., Silvestrov, S. (2020). A review on Hom-Gerstenhaber algebras and Hom-Lie algebroids. In: Silvestrov S., Malyarenko A., Rancić, M., eds. Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, Vol. 317, Ch 11. Cham: Springer, pp. 285–315.
  • Palais, R. (1961). The cohomology of Lie rings. Proc. Symp. Pure Math., Amer. Math. Soc. Providence, R. I., pp. 130–137
  • Rinehart, G. (1963). Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108(2):195–222. DOI: 10.1090/S0002-9947-1963-0154906-3.
  • Rota, G. (1969). Baxter algebras and combinatorial identities I, II. Bull. Amer. Math. Soc. 75(2):330–334. DOI: 10.1090/S0002-9904-1969-12156-7.
  • Takhtajan, L. (1994). On foundation of the generalized Nambu mechanics. Commun. Math. Phys. 160(2):295–315. DOI: 10.1007/BF02103278.