198
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

SO2 SCRUBBING IN A TAPERED BUBBLE COLUMN SCRUBBER

&
Pages 1562-1580 | Published online: 25 Jan 2007
 

Abstract

SO2 emissions from various sources are found to occur in various concentrations and quantities. Abatement of SO2 emission, therefore, assumes significant importance over the decades. Wet scrubbers offer great advantage over other devices for gas cleaning. That is the reason that compliance with SO2 standards will in many cases result in the installation of scrubbing devices. This article presents results of a study on the scrubbing of SO2 (initial concentration ranging between 400 and 1780 ppm) in a tapered bubble column scrubber using water and dilute sodium alkali. Preliminary studies reveal that the tapered bubble column is capable of generating higher fractional gas holdup than a standard bubble column under similar situations. Moreover, the tapered bubble column has generated bubbles with less power consumption than the existing columns under comparable hydrodynamical conditions. Experimental results indicate that almost 100% SO2 removal (i.e., zero penetration) can be achieved in the scrubber developed in alkali scrubbing at an optimum QL/QG ratio of 3.0 m3/1000 ACM. The selection of any gas-cleaning device is based on the performance of the system. In view of this, empirical and semi-empirical correlations are put forward for the prediction of the performance of the scrubber in terms of different pertinent variables of the system for water as well as alkali scrubbing. Experimental results fit extremely well with the correlations. The removal efficiency achievable in the present tapered bubble column scrubber has been found to be higher than that of a single-stage standard bubble column with some modification. The present tapered bubble column is, therefore, hydrodynamically, energetically, and efficiency-wise much better than a standard bubble column.

View correction statement:
Corrigendum

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.