294
Views
8
CrossRef citations to date
0
Altmetric
Articles

Experimental and modeling study for the removal of formic acid through bulk ionic liquid membrane using response surface methodology

&
Pages 1426-1439 | Published online: 29 Aug 2019
 

Abstract

In this study, formic acid removal from its aqueous solutions through bulk ionic liquid membrane (BILM) was investigated. Tributyl phosphate (TBP) as a carrier in imidazolium-based ionic liquids was used. D-optimal design based on response surface methodology has been applied to investigate the effect of various operating factors. Initial formic acid concentration, TBP concentration, and NaOH concentration were selected as numerical factors, and ionic liquid type was chosen as a categorical factor. The model equations were obtained to determine BILM process behavior. The removal efficiencies, represented by the extraction and stripping efficiencies, were calculated from the experimental data. The highest removal efficiencies were determined at higher concentration values of TBP and NaOH. All ionic liquids studied in this study had good transport selectivity for the removal of formic acid. The design study showed that BILM is an effective method for the removal of formic acid from the water.

Acknowledgements

We also wish to thank TUBITAK for financial support through the program as 2211-C Priority Areas Doctorate Programme Scholarship.

Additional information

Funding

This study was funded by Istanbul University (Bilimsel Araştirma Projeleri Birimi, Istanbul Üniversitesi) with the Project Number 53978.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.