294
Views
8
CrossRef citations to date
0
Altmetric
Articles

Experimental and modeling study for the removal of formic acid through bulk ionic liquid membrane using response surface methodology

&

References

  • Aşçı, Y. S., and İnci, İ. (2009). Extraction equilibria of propionic acid from aqueous solutions by Amberlite LA-2 in diluent solvents, Chem. Eng. J., 155, 784–788.
  • Asghar, A., Raman, A., Aziz, A., and Daud, W. M. A. W. (2014). A comparison of central composite design and Taguchi method for optimizing Fenton process, Sci. World J., 2014, 1–14.
  • Baş, D., and Boyacı, I. H. (2007). Modeling and optimization I: Usability of response surface methodology, J. Food Eng.,78, 836–845.
  • Baylan, N. (2017). Separation of various carboxylic acids from aqueous solutions by bulk ionic liquid membranes (PhD thesis, Istanbul University).
  • Baylan, N., Çehreli, S., and Özparlak, N. (2017). Transport and separation of carboxylic acids through bulk liquid membranes containing tributylamine, J. Dispers. Sci. Technol., 38, 895–900.
  • Cares, J. R., and Dickmann, J. Q. Jr. (2016). Operations Research for Unmanned Systems, John Wiley & Sons, Chichester, UK.
  • Cha, J., and Hanna, M. (2002). Levulinic acid production based on extrusion and pressurized batch reaction, Ind Crops Prod., 16, 109–118.
  • Chakraborty, M., and Bart, H.-J. (2007). Highly selective and efficient transport of toluene in bulk ionic liquid membranes containing Ag + as carrier, Fuel Process. Technol., 88, 43–49.
  • Chakrabarty, K., Krishna, K. V., Saha, P., and Ghoshal, A. K. (2009). Extraction and recovery of lignosulfonate from its aqueous solution using bulk liquid membrane, J. Membrane Sci., 330, 135–144.
  • Chen, C.-C., Chiang, K.-T., Chou, C.-C., and Liao, Y.-C. (2011). The use of D-optimal design for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool, Int. J. Adv. Manuf. Technol., 54, 465–478.
  • Czitrom, V., and Spagon, P. D. (1997). Statistical Case Studies for Industrial Process Improvement, Siam, Philadelphia.
  • Earle, M. J., and Seddon, K. R. (2000). Ionic liquids. Green solvents for the future, Pure Appl. Chem., 72, 1391–1398.
  • Eren, I., and Kaymak-Ertekin, F. (2007). Optimization of osmotic dehydration of potato using response surface methodology, J. Food Eng., 79, 344–352.
  • Fortunato, R., González-Muñoz, M. J., Kubasiewicz, M., Luque, S., Alvarez, J., Afonso, C. A., Coelhoso, I. M., and Crespo, J. G. (2005). Liquid membranes using ionic liquids: The influence of water on solute transport, J. Membrane Sci., 249, 153–162.
  • Fredlake, C. P., Crosthwaite, J. M., Hert, D. G., Aki, S. N., and Brennecke, J. F. (2004). Thermophysical properties of imidazolium-based ionic liquids, J. Chem. Eng. Data, 49, 954–964.
  • Gürel, L., and Büyükgüngör, H. (2006). Liquid membranes in advanced treatment, Sigma 2, 30–44.
  • Hong, Y. K., Hong, W. H., and Han, D. H. (2001). Application of reactive extraction to recovery of carboxylic acids, Biotechnol. Bioprocess Eng., 6, 386–394.
  • İNce, E., Lalikoglu, M., and Constantinescu, D. (2014). Liquid phase equilibria of water + formic acid + dimethyl carbonate ternary system at several temperatures, J. Chem. Eng. Data, 59, 2781–2787.
  • Kamiński, W., and Kwapiński, W. (2000). Applicability of liquid membranes in environmental protection, Pol. J. Environ. Studies 9, 37–43.
  • Kaur, A., and Vohra, D. (2010). Study of bulk liquid membrane as a separation technique to recover acetic and propionic acids from dilute solutions, Ind. J. Chem. Technol., 17, 133–138.
  • Kislik, V. S. (2009). Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment, Elsevier, Oxford, UK.
  • Kogelnig, D., Stojanovic, A., Jirsa, F., Körner, W., Krachler, R., and Keppler, B. K. (2010). Transport and separation of iron (III) from nickel (II) with the ionic liquid trihexyl (tetradecyl) phosphonium chloride, Sep. Purif. Technol., 72, 56–60.
  • Koter, S., and Szczepański, P. (2011). Modeling of diffusive transport of benzoic acid through a liquid membrane, Chem. Papers, 65, 584–595.
  • Kubisova, L., Marták, J., and Schlosser, S. (2003). Transport of 5-methyl-2-pyrazinecarboxylic acid through a layered bulk liquid membrane, Chem. Papers-Slovak Acad. Sci., 56, 418–425.
  • Kumar, S., and Babu, B. (2008). Process intensification for separation of carboxylic acids from fermentation broths using reactive extraction, i-Manager’s, J. Future Eng. Technol., 3, 21–27.
  • Kuram, E., Ozcelik, B., Bayramoglu, M., Demirbas, E., and Simsek, B. T. (2013). Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments, J. Cleaner Prod., 42, 159–166.
  • Kurzrock, T., and Weuster-Botz, D. (2010). Recovery of succinic acid from fermentation broth, Biotechnol. Lett., 32, 331–339.
  • Lakshmi, A. B., Sindhu, S., and Venkatesan, S. (2013). Performance of ionic liquid as bulk liquid membrane for chlorophenol removal, Int. J. ChemTech Res., 5, 1129–1137.
  • León, G., and Guzman, M. A. (2008). Facilitated transport of copper through bulk liquid membranes containing different carriers: compared kinetic study, Desalination, 223, 330–336.
  • Ma, M., Chen, B., Luo, X., Tan, H., He, D., Xie, Q., and Yao, S. (2004). Study on the transport selectivity and kinetics of amino acids through di (2-ethylhexyl) phosphoric acid-kerosene bulk liquid membrane, J. Membrane Sci., 234, 101–109.
  • Ma, M., He, D., Liao, S., Zeng, Y., Xie, Q., and Yao, S. (2002). Kinetic study of l-isoleucine transport through a liquid membrane containing di (2-ethylhexyl) phosphoric acid in kerosene, Anal. Chim. Acta, 456, 157–165.
  • Madaeni, S., Jamali, Z., and Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier, Sep. Purif. Technol., 81, 116–123.
  • Mohammed, S. A., and Hameed, M. S. (2016). Extraction of 4-nitrophenol from aqueous solutions using bulk ionic liquid membranes, Int. J. Curr. Eng. Technol., 6, 542–550.
  • Ng, Y. S., Jayakumar, N., and Hashim, M. A. (2011). Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization, Desalination, 278, 250–258.
  • Oshima, T., Inoue, K., Furusaki, S., and Goto, M. (2003). Liquid membrane transport of amino acids by a calix [6] arene carboxylic acid derivative, J. Membrane Sci., 217, 87–97.
  • Rajmohan, T., and Palanikumar, K. (2013). Modeling and analysis of performances in drilling hybrid metal matrix composites using D-optimal design, Int. J. Adv. Manuf. Technol., 64, 1249–1261.
  • Sahoo, G., Ghosh, A., and Dutta, N. (1997). Recovery of cephalexin from dilute solution in a bulk liquid membrane, Proc. Biochem., 32, 265–272.
  • Sahoo, G., Ghosh, A., Dutta, N., and Mathur, R. (1996). Facilitated transport of 7-aminocephalosporanic acid in a bulk liquid membrane, J. Membrane Sci., 112, 147–154.
  • Sahoo, G., Dutta, N., and Dass, N. (1999). Liquid membrane extraction of cephalosporin-C from fermentation broth, J. Membrane Sci., 157, 251–261.
  • Schlosser, Š., Kertész, R., and Martak, J. (2005). Recovery and separation of organic acids by membrane-based solvent extraction and pertraction: An overview with a case study on recovery of MPCA, Sep. Purif. Technol., 41, 237–266.
  • Schlosser, S., and Sabolová, E. (2000). Transport of butyric acid through layered bulk liquid membranes, Chem. Papers-Slovak Acad. Scie., 53, 403–411.
  • Song, H., and Lee, S. Y. (2006). Production of succinic acid by bacterial fermentation, Enzyme Microb. Technol., 39, 352–361.
  • Soniya, M., and Muthuraman, G. (2015). Comparative study between liquid–liquid extraction and bulk liquid membrane for the removal and recovery of methylene blue from wastewater, J. Ind. Eng. Chem., 30, 266–273.
  • Szczepański, P., and Diaconu, I. (2012). Transport of p-nitrophenol through an agitated bulk liquid membrane, Sep. Sci. Technol., 47, 1725–1732.
  • Szczepański, P., Tanczos, S. K., Ghindeanu, L. D., and Wodzki, R. (2014). Transport of p-nitrophenol in an agitated bulk liquid membrane system–experimental and theoretical study by network analysis, Sep. Purif. Technol., 132, 616–626.
  • Teng, T., and Talebi, A. (2012). Green liquid membrane: Development and challenges, J. Membrane Sci. Technol., 2, 1–2.
  • Uslu, H., Bayat, C., GöKmen, S., and Yorulmaz, Y. (2008). Reactive extraction of formic acid by Amberlite LA-2 extractant, J. Chem. Eng. Data, 54, 48–53.
  • Yang, X., Fane, A., and Soldenhoff, K. (2003). Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity, Ind. Eng. Chem. Res., 42, 392–403.
  • Yoo, C. G., Pu, Y., and Ragauskas, A. J. (2017). Ionic liquids: Promising green solvents for lignocellulosic biomass utilization, Curr. Opinion Green Sust. Chem., 5, 5–11.
  • Yun, J., Jin, F., Kishita, A., Tohji, K., and Enomoto, H. (2010). Formic acid production from carbohydrates biomass by hydrothermal reaction, J. Phys Conf. Ser. 215, 1–4.
  • Zeikus, J., Jain, M., and Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products, Appl. Microbiol. Biotechnol., 51, 545–552.
  • Zhivkova, S., Dimitrov, K., Kyuchoukov, G., and Boyadzhiev, L. (2004). Separation of zinc and iron by pertraction in rotating film contactor with Kelex 100 as a carrier, Sep. Purif. Technol., 37, 9–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.