43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Correlation study of thermal charging, discharging, and efficiency of graphene oxide-reinforced paraffin wax for thermal energy storage system

, , ORCID Icon &
Pages 1336-1342 | Published online: 12 Apr 2024
 

Abstract

Nanocomposites, produced through mechanical blending, serve to enhance thermal performance of heat exchangers, solar collectors, and photovoltaic-thermal systems. This work employs an experimental methodology to assess the thermal charging (TC) and thermal discharging (TDC) of a composite generated by mixing graphene oxide (GO) and paraffin wax. TC and TDC of the GO-reinforced paraffin wax-based phase change material (PCM) have been examined across different flow rates (0.375, 0.75, and 1.5 L/min) and concentrations of GO (ranging from 0.25 to 1.00 vol%). The results exhibit a direct correlation between TC, TDC and efficiency, and reaction parameters (flow rate and volume concentration of GO). The experimental and predicted values of TCs, TDCs, and efficiencies fell ±15% (for TC and TDC), and ±9% for thermal efficiency, demonstrating a satisfactory level of agreement. This holds a practical application and valuable predictive tool for estimating TC, TDC, and thermal efficiency on known flow rates and concentrations of GO in wax-based PCMs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Department of Science and Technology, Ministry of Science and Technology, India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,086.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.