43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Correlation study of thermal charging, discharging, and efficiency of graphene oxide-reinforced paraffin wax for thermal energy storage system

, , ORCID Icon &

References

  • Brousseau P, Lacroix M. 1998. Numerical simulation of a multi-layer latent heat thermal energy storage system. Int J Energy Res. 22(1):1–15. doi:10.1002/(SICI)1099-114X(199801)22.
  • Diarce G, Campos-Celador Á, Sala JM, García-Romero A. 2018. A novel correlation for the direct determination of the discharging time of plate-based latent heat thermal energy storage systems. Appl Therm Eng. 129:521–534. doi:10.1016/j.applthermaleng.2017.10.057.
  • Gautam A, Saini RP. 2021. Development of correlations for Nusselt number and friction factor of packed bed solar thermal energy storage system having spheres with pores as packing elements. J Storage Mater. 36:102362. doi:10.1016/j.est.2021.102362.
  • Gonzalez-Nino D, Boteler LM, Ibitayo D, Jankowski NR, Urciuoli D, Kierzewski IM, Quintero PO. 2018. Experimental evaluation of metallic phase change materials for thermal transient mitigation. Int J Heat Mass Transf. 116:512–519. doi:10.1016/j.ijheatmasstransfer.2017.09.039.
  • Guangul FM, Chala GT. 2019. Solar energy as renewable energy source: SWOT analysis. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), p. 1–5. doi:10.1109/ICBDSC.2019.8645580.
  • Guo C, Zhang W. 2008. Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system. Energy Convers Manage. 49(5):919–927. doi:10.1016/j.enconman.2007.10.025.
  • Javadi FS, Metselaar H, Ganesan P. 2020. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review. Sol Energy. 206:330–352. doi:10.1016/j.solener.2020.05.106.
  • Jiang Y, Liu M, Sun Y. 2019. Review on the development of high temperature phase change material composites for solar thermal energy storage. Sol Energy Mater Sol Cells. 203:110164. doi:10.1016/j.solmat.2019.110164.
  • Jiang J, Zhang H, Liu L, Bai Z, Che J, Wang Y, Quan F. 2023. One-step preparation of double network phase change composite with GO for enhanced thermal management performance. Compos Sci Technol. 243:110220. doi:10.1016/j.compscitech.2023.110220.
  • Kalidasan B, Pandey AK, Rahman S, Sharma K, Tyagi VV. 2023. Experimental investigation of graphene nanoplatelets enhanced low temperature ternary eutectic salt hydrate phase change material. Energies. 16(4):1574. doi:10.3390/en16041574.
  • Kalidasan B, Pandey AK, Rahman S, Yadav A, Samykano M, Tyagi VV. 2022. Graphene–silver hybrid nanoparticle based organic phase change materials for enhanced thermal energy storage. Sustainability. 14(20):13240. doi:10.3390/su142013240.
  • Liu Y, Yang Y. 2017. Investigation of specific heat and latent heat enhancement in hydrate salt based TiO2 nanofluid phase change material. Appl Therm Eng. 124:533–538. doi:10.1016/j.applthermaleng.2017.05.150.
  • Liu Y, Yang Y, Li S. 2016. Graphene oxide modified hydrate salt hydrogels: form-stable phase change materials for smart thermal management. J Mater Chem A. 4(46):18134–18143. doi:10.1039/C6TA08850C.
  • Liu Y, Yu K, Yang Y, Jia M, Sun F. 2020. Size effects of nano-rutile TiO2 on latent heat recovered of binary eutectic hydrate salt phase change material. Thermochim Acta. 684:178492. doi:10.1016/j.tca.2019.178492.
  • Mekrisuh KU, Singh D, Udayraj. 2020. Performance analysis of a vertically oriented concentric-tube PCM based thermal energy storage system: parametric study and correlation development. Renew Energy. 149: 902–916. doi:10.1016/j.renene.2019.10.074.
  • Motahar S, Alemrajabi AA, Khodabandeh R. 2017. Experimental study on solidification process of a phase change material containing TiO2 nanoparticles for thermal energy storage. Energy Convers Manage. 138:162–170. doi:10.1016/j.enconman.2017.01.051.
  • Pisani E. 2020. Thermal energy storage—overview and basic principles. Celsius Initiative. https://celsiuscity.eu/thermal-energy-storage/.
  • Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA. 2018. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng. 130:1349–1362. doi:10.1016/j.applthermaleng.2017.11.130.
  • Wang Y, Tang B, Zhang S. 2014. Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: a reversible phase transition driven by broadband visible light. Appl Energy. 113:59–66. doi:10.1016/j.apenergy.2013.07.007.
  • Xu B, Li P, Chan C. 2015. Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl Energy. 160:286–307. doi:10.1016/j.apenergy.2015.09.016.
  • Xu Y, Zheng ZJ, Li MJ. 2019. A half-analytical correlation of total melting time for shell-and-tube latent-heat thermal energy storage unit. Appl Therm Eng. 161:114176. doi:10.1016/j.applthermaleng.2019.114176.
  • Zeng JL, Zhu FR, Yu SB, Zhu L, Cao Z, Sun LX, Deng GR, Yan WP, Zhang L. 2012. Effects of copper nanowires on the properties of an organic phase change material. Sol Energy Mater Sol Cells. 105:174–178. doi:10.1016/j.solmat.2012.06.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.