0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Maize leaf disease detection using convolutional neural network: a mobile application based on pre-trained VGG16 architecture

, , , , &
Received 27 Feb 2024, Accepted 23 Jul 2024, Published online: 04 Aug 2024
 

ABSTRACT

Reliance on visual inspection for Maize leaf disease identification proves unreliable, often resulting in inappropriate pesticide application and associated health hazards. Food security requires precise and automated disease detection methods to save time and prevent crop losses. Although several studies have used deep and machine learning to detect plant leaf diseases from different perspectives, most of them require numerous training parameters or have low classification accuracy. Furthermore, a model that was developed for one region of the world might not be appropriate for another due to distinctions in morphology and other aspects. In this context, an application for mobile phones was developed that recognizes and classifies maize leaf diseases using a CNN-based pretrained VGG16 architecture. The model can detect northern corn leaf blight, common rust, and gray leaf spots in maize leaves in tropical climates. A total of 3024 images were used to generate the underlying model, including publicly available and field-collected images. The established model uses fewer training parameters to attain a training accuracy of 95.16% and a testing accuracy of 93%. The model provides farmers with an early warning system for early detection of plant diseases, enabling them to take preventive measures before significant production deficits occur.

Acknowledgement

The authors would like to acknowledge the field officers of the Ministry of Agriculture, who supported us in numerous ways during the field visits, photography, and leaf disease detection.

Data availability statement

The dataset is available in the public repository Zenodo (background removed images). Available from: https://doi.org/10.5281/zenodo.12609449

.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 231.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.