0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Maize leaf disease detection using convolutional neural network: a mobile application based on pre-trained VGG16 architecture

, , , , &
Received 27 Feb 2024, Accepted 23 Jul 2024, Published online: 04 Aug 2024

References

  • Aishwarya K, Kumar BS, Raju SV. 2019. Retracted: facial recognition using aggregation and random forest classification method. Journal of Physics: Conference Series. 1362(1):012078. doi:10.1088/1742-6596/1362/1/012078.
  • Akhtar Z, Ali R. 2020. Automatic number plate recognition using random forest classifier. SN Computer Science. 1(3). doi:10.1007/s42979-020-00145-8.
  • Alatawi AA, Alomani SM, Alhawiti NI, Ayaz M. 2022. Plant disease detection using AI based VGG-16 model. International Journal of Advanced Computer Science and Applications. 13(4). doi:10.14569/IJACSA.2022.0130484.
  • Aravind KR, Raja P, Aniirudh R, Mukesh KV, Ashiwin R, Vikas G. 2019. Grape crop disease classification using transfer learning approach. Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering. 2018(ISMAC-CVB):1623–1633. doi:10.1007/978-3-030-00665-5_150.
  • Archana S, Sahayadhas A. 2018. Automatic rice leaf disease segmentation using image processing techniques. International Journal of Engineering & Technology. 7(3.27):182. doi:10.14419/ijet.v7i3.27.17756.
  • Athiwaratkun B. 2015. Feature representation in convolutional neural networks. CoRR. abs/1507.02313. doi:10.48550/arXiv.1507.02313.
  • Augusstine NMJ, Samy SRN. 2018. Smart healthcare monitoring system using support vector machine. Australian Journal of Science and Technology. 2(3):1–8.
  • Barbedo J. 2018. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Computers and Electronics in Agriculture. 153:46–53. doi:10.1016/j.compag.2018.08.013.
  • Barman U. 2021. A deep learning based android application to detect the leaf diseases of maize. Part of the Advances in Intelligent Systems and Computing book series. doi:10.1007/978-981-15-8061-1_22.
  • Bi C, Xu S, Nan H, Shuo Z, Zhenyi Z, Helong Y. 2023. Identification method of corn leaf disease based on improved mobilenetv3 model. Agronomy. 13(2):300. doi:10.3390/agronomy13020300.
  • Choi S, Bong K, Han D, Yoo H. 2019. CNNP-V2: An energy efficient memory-centric convolutional neural network processor architecture. 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) [Preprint]. doi:10.1109/aicas.2019.8771617.
  • Corn leaf diseases. 2023. Kruger SeedsTM; [accessed 2024 Apr 14]. https://www.krugerseed.com/en-us/agronomy-library/corn-leaf-diseases.html.
  • Differentiating corn leaf diseases. 2019. CropWatch; [accessed 2024 Feb 19]. https://cropwatch.unl.edu/2018/differentiating-corn-leaf-diseases.
  • Donatelli M, Magarey RD, Bregaglio S, Willocquet L, Whish JP, Savary S. 2017. Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems. 155:213–224. doi:10.1016/j.agsy.2017.01.019.
  • Gunawan D, Rohimah W, Rahmat RF. 2019. Automatic number plate recognition for Indonesian license plate by using K-nearest neighbor algorithm. IOP Conference Series: Materials Science and Engineering. 648(1):012011. doi:10.1088/1757-899X/648/1/012011.
  • Haque M, Marwaha S, Arora A, Deb C, Misra T, Nigam S, Hooda K. 2022. A lightweight convolutional neural network for recognition of severity stages of maydis leaf blight disease of maize. Frontiers in Plant Science. 13:27. doi:10.3389/fpls.2022.1077568.
  • Harvey C, Rakotobe Z, Rao N, Dave R, Razafimahatratra H, Rabarijohn R, Rajaofara H, MacKinnon J. 2014. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences. 369(1639):20130089. doi:10.1098/rstb.2013.0089.
  • He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Preprint]. doi:10.1109/cvpr.2016.90.
  • Ioffe S, Szegedy C. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proceedings of the 32nd International Conference on Machine Learning. 37:448–456.
  • Johannes A, Picon A, Alvarez-Gila A, Echazarra J, Rodriguez-Vaamonde S, Navajas AD, Ortiz-Barredo A. 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers and Electronics in Agriculture. 138:200–209. doi:10.1016/j.compag.2017.04.013.
  • Kamilaris A, Prenafeta-Boldú F. 2018. Deep learning in agriculture: a survey. Computers and Electronics in Agriculture. 147:70–90. doi:10.1016/j.compag.2018.02.016.
  • Karunaratne A, Wheeler T. 2016. Maize and climate change in Sri Lanka: progress, trends, and challenges in simulating impacts. Acta Horticulturae. 1112:55–62. doi:10.17660/ActaHortic.2016.1112.8.
  • Kennett DJ, Prufer KM, Culleton BJ, George RJ, Robinson M, Trask WR, Buckley GM, Moes E, Kate EJ, Harper TK, et al. 2020. Early isotopic evidence for maize as a staple grain in the Americas. Science Advances. 6:eaba3245. doi:10.1126/sciadv.aba3245.
  • Khan F, Zafar N, Tahir N, Aqib MM, Waheed H, Haroon Z. 2023. A mobile-based system for maize plant leaf disease detection and classification using deep learning. Frontiers in Plant Science. 14. doi:10.3389/fpls.2023.1079366.
  • Kumar A, Kumar A. 2023. Plant disease detection using AI based VGG-16 model. International Journal of Creative Research Thoughts (IJCRT). 11(1). https://api.semanticscholar.org/CorpusID:262935118.
  • Kumari J, Wijayaratne L, Jayawardena N, Egodawatta W. 2020. Quantitative and qualitative losses in paddy, maize and greengram stored under household conditions in Anuradhapura District of Sri Lanka. Sri Lankan Journal of Agriculture and Ecosystems. 2(1):99–106. doi:10.4038/sljae.v2i1.32.
  • Lankasena BNS, Wisumperuma D, Seneviratne B, Perera HDDCK, Nugara RN, Perera PK. 2022. Misidentifications in ayurvedic medicinal plants: Convolutional Neural Network (CNN) to overcome identification confusions. Conference: International Conference on Innovation and Emerging Technologies (ICIET).
  • Le Q, Ngiam J, Coates A, Lahiri A. 2011. On optimization methods for deep learning. Proceedings of the 28th International Conference on Machine Learning (ICML-11). 2011:265–272.
  • Liang W, Zhang H, Zhang G, Cao H. 2019. Rice blast disease recognition using a deep convolutional neural network. Scientific Reports. 9(1). doi:10.1038/s41598-019-38966-0.
  • Lin T, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston; p. 2117–2125. doi:10.1109/CVPR.2017.106.
  • Livni R, Shalev-Shwartz S, Shamir O. 2014. On the computational efficiency of training neural networks. arXiv.org > cs > arXiv:1410.1141. doi:10.48550/arXiv.1410.1141.
  • Lu Y, Yi S, Zeng N, Liu Y, Zhang Y. 2017. Identification of rice diseases using deep convolutional neural networks. Neurocomputing. 267:378–384. doi:10.1016/j.neucom.2017.06.023.
  • Luke E, Beckerman J, Sadof C, Richmond D, McClure D, Hill M, Lu Y. 2019. Purdue plant doctor app suite. Purdue University; [accessed 2019 Feb 16]. https://www.purdueplantdoctor.com/.
  • Martínez-Marquina L, Caballero-López-Fando I, Mora-Jiménez I. 2024. Naïve Bayes as a probabilistic tool for monitoring the health status of chronic patients. Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies [Preprint]. doi:10.5220/0012353000003657.
  • Ngugi L, Abdelwahab M, Abo-Zahhad M. 2020. Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Computers and Electronics in Agriculture. 178:105788. doi:10.1016/j.compag.2020.105788.
  • Nwanosike MRO, Mabagala RB, Kusolwa PM. 2015. Effect of Northern leaf blight (Exserohilum turcicum) severity on yield of maize (Zea mays L.) in Morogoro. Tanzania Journal of Science. 4:466–475.
  • Priyadharshini AR, Arivazhagan S, Arun M, Mirnalini A. 2019. Maize leaf disease classification using deep convolutional neural networks. Neural Computing & Applications. doi:10.1007/s00521-019-04228-3.
  • Rahman RF, Suharjito S. 2023. Crowd face detection with naive bayes in attendance system using Raspberry Pi. E3S Web of Conferences. 388:02010. doi:10.1051/e3sconf/202338802010.
  • Rai D, Singh SK. 2018. Is banded leaf and sheath blight a potential threat to maize cultivation in Bihar? International Journal of Current Microbiology and Applied Sciences. 7(11):671–683. doi:10.20546/ijcmas.2018.711.080.
  • Rashid J, Khan I, Ali G, Almotiri SH, AlGhanadi MA, Masood K. 2021. Multi-level deep learning model for Potato Leaf disease recognition. Electronics. 10(17):2064. doi:10.3390/electronics10172064.
  • Richey B, Majumder S, Shirvaikar M, Kehtarnavaz N. 2020. Real-time detection of maize crop disease via a deep learning-based smartphone app. doi:10.1117/12.2557317.
  • Selvaraj A, Shebiah N, Ananthi S, Varthini SV. 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agricultural Engineering International: The CIGR e-journal. 15:211–217.
  • Shi L, Wang X, Shen Y. 2020. Research on 3D face recognition method based on LBP and SVM. Optik. 220:165157. doi:10.1016/j.ijleo.2020.165157.
  • Shiferaw B, Prasanna B, Hellin J, Banziger M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security. 3:307–327. doi:10.1007/s12571-011-0140-5.
  • Shorten C, Khoshgoftaar TM. 2019. A survey on image data augmentation for Deep Learning. Journal of Big Data. 6(1). doi:10.1186/s40537-019-0197-0.
  • Sibiya M, Sumbwanyambe M. 2019. A computational procedure for the recognition and classification of maize leaf diseases out of healthy leaves using convolutional neural networks. Agri Engineering. 1(1):119–131.
  • Simonyan K. 2015. Very deep convolutional networks for large-scale image recognition. Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 6. doi:10.48550/arXiv.1409.1556.
  • Singh G, Rani R, Sharma N, Kakkar D. 2021. Identification of tomato leaf diseases using deep convolutional neural networks. International Journal of Agricultural and Environmental Information Systems. 12(4):1–22. doi:10.4018/IJAEIS.20211001.oa3.
  • Sonobe R, Hirono Y, Oi A. 2020. Non-destructive detection of tea leaf chlorophyll content using hyperspectral reflectance and machine learning algorithms. Plants. 9(3):368. doi:10.3390/plants9030368.
  • Subedi S. 2015. A review on important maize diseases and their management in Nepal. Journal of Maize Research and Development. 1(1):28–52. doi:10.5281/zenodo.34292.
  • Subedi S, Gharti D, Neupane S, Ghimire T. 2016. Management of anthracnose in soybean using fungicide. Journal of Nepal Agricultural Research Council. 1:29–32. doi:10.3126/jnarc.v1i0.15721.
  • Sun J, Tan WJ, Mao HP, Wu XH, Chen Y, Wang L. 2017. Identification of leaf diseases of various plants based on improved convolutional neural network. Agriculture Engineering Newspaper. 19:209–215.
  • Syarief M, Setiawan W. 2020. Convolutional neural network for maize leaf disease image classification. TELKOMNIKA Telecommunication, Computing, Electronics and Control. 18(3):1376–1381. doi:10.12928/telkomnika.v18i3.14840.
  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions. 2015. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Preprint]. doi:10.1109/cvpr.2015.7298594.
  • Vieira RA, Mesquini RM, Silva CN, Hata FT, Tessmann DJ, Scapim CA. 2014. A new diagrammatic scale for the assessment of northern corn leaf blight. Crop Protection. 56:55–57. doi:10.1016/j.cropro.2011.04.018.
  • Wirdiani NKA, Hridayami P, Widiari NPA, Rismawan KD, Candradinata PB, Jayantha IPD. 2019. Face identification based on K-nearest neighbor. Scientific Journal of Informatics. 6(2):150–159. doi:10.15294/sji.v6i2.19503.
  • Yosinski J, Clune J, Bengio Y, Lipson H. 2014. How transferable are features in deep neural networks? Advances in Neural Information Processing Systems. 27:3320–3328. doi:10.48550/arXiv.1411.1792.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.