344
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Biomineralization Potential of Bacillus subtilis, Rummeliibacillus Stabekisii and Staphylococcus Epidermidis Strains In Vitro Isolated from Speleothems, Khasi Hill Caves, Meghalaya, India

, , , &
Pages 675-694 | Received 21 Feb 2018, Accepted 22 Feb 2018, Published online: 18 Apr 2018
 

ABSTRACT

Microorganisms were isolated and identified from speleothems at Khasi hill caves, Meghalaya. The aim was to understand their biomineralization potential. Analyses of the speleothems from Krem Soitan, Krem Mawpun, and Krem Lawbah using scanning electron microscope (SEM) showed evidences for microbe–mineral interactions. SEM showed microbial reticulate and beaded filaments, cells, fiber calcites, and clusters of coccoid-like structures. A total of 113 bacterial strains were isolated and identified by a combination of conventional and molecular based tools. 105 strains that were sequenced belonged to the genus: Bacillus, Rummeliibacillus, Staphylococcus, and Brevibacterium. The BLASTn sequence search of 16S rRNA sequences with the National Centre for Biotechnology Information database to establish the identity of the strains yielded similarity scores of ≥99% with the respective organisms. The strains were identified as Bacillus simplex, Bacillus gaemokensis, Bacillus subtilis, Bacillus thuringiensis, Bacillus albus, Bacillus cereus, Bacillus anthracis, Bacillus weihenstephanensis, Rummeliibacillus stabekisii, Bacillus wiedmannii, Staphylococcus epidermidis, Rummeliibacillus pycnus, Kurthia zopfii, and Brevibacterium frigoritolerans. These strains were tested for biomineralization on B-4 medium. Five strains (B. subtilis, R. stabekisii, Staphylococcus epiderdimis, B. cereus, and B. wiedmannii) had the capability to precipitate biominerals in vitro. B. subtilis, R. stabekisii, and S. epidermidis precipitated 0.24, 0.36, and 0.35 g/L of biominerals at 22°C at the end of the four week experiment period. These strains increased the pH of the medium from 7 to 8.95. The precipitated biominerals were imaged using an ultra-high resolution field emission SEM. X-ray diffraction of the biomineral precipitated by R. stabekisii showed that it was composed of vaterite and jungite. Whereas S. epidermidis showed that it was composed of calcite, vaterite, and jungite. B. subtilis produced small, circular calcite crystals. This is the first comprehensive report on the possible evidences about the role of R. stabekisii and S. epidermidis in calcite precipitation isolated from speleothems in the Indian caves. These results allow us to postulate that the identified strains have biomineralization potential. Further evidences of the coexistence of exopolysaccharides, whisker fiber calcites, microbial filaments, and coccoid-like forms point to biogenic inputs in the cave mineral formations.

Acknowledgments

The authors thank Department of applied physics GJUS&T Hisar for XRD, SAI labs Patiala for SEM-EDX of speleothems samples, central instrumentation lab GJUS&T Hisar for FTIR, SMITA labs IIT Delhi for FE-SEM, and EDX of biominerals. For molecular microbiology and DNA sequencing, National microbial resource centre, Pune is acknowledged for the identification of cultures. DM thanks UGC-BSR, New Delhi for financial assistance. Locals from Mawlyngbna village are thanked for help in field work assistance.

Additional information

Funding

This study was financially supported by UGC-BSR, New Delhi.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 370.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.