344
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Biomineralization Potential of Bacillus subtilis, Rummeliibacillus Stabekisii and Staphylococcus Epidermidis Strains In Vitro Isolated from Speleothems, Khasi Hill Caves, Meghalaya, India

, , , &
Pages 675-694 | Received 21 Feb 2018, Accepted 22 Feb 2018, Published online: 18 Apr 2018

References

  • Adetutu EM, Thorpe K, Shahsavari E, Bourne S, Cao X, Fard RMN, Kirby G, Ball AS. 2012. Bacterial community survey of sediments at Naracoorte Caves, Australia. Int J Speleol. 41(2):137–47. doi:10.5038/1827-806X.41.2.2.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lip- man DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 25:3389–402. doi:10.1093/nar/25.17.3389. PMID:9254694.
  • APHA. 2005. Standard methods for the examination of water and waste water. 21st ed. Washington, DC: American Public Health Association.
  • Bajnόcsi B, Kovács-Kis V. 2006. Origin of pedogenic needle-fiber calcite revealed by micromorphology and stable isotope composition— a case study of a quaternary paleosol from Hungary. Chemie der Erde. 66:203–12. doi:10.1016/j.chemer.2005.11.002.
  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. 2007. Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. 5:401–11. doi:10.1111/j.1472-4669.2007.00117.x.
  • Barton HA, Taylor NM, Kreate MP, Springer AC, Oehrle SA, Bertog JL. 2007. the impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. 36:93–104.
  • Baskar S, Baskar R, Mauclaire L, McKenzie JA. 2005. Role of microbial community in stalactite formation, Sahastradhara caves, Dehradun, India. Curr Sci. 88:1305–8.
  • Baskar S, Baskar R, Mauclaire L, McKenzie JA. 2006. Microbially induced calcite precipitation by culture experiments—possible origin for stalactites in Sahastradhara, Dehradun, India. Curr Sci. 90:58–64.
  • Baskar S, Baskar R, Thorseth IH, Ovreas L, Pedersen RB. 2012. Microbial iron precipitation associated with a neutrophilic spring of Borra caves, Vishakapatanam, India. Astrobiol J. 12(4):327–46. doi:10.1089/ast.2011.0672.
  • Baskar S, Routh J, Baskar R, Kumar A, Miettinen H, Itävaara M. 2016. Evidences for microbial precipitation of calcite in speleothems from Krem Syndai in Jaintia Hills, Meghalaya, India. Geomicrbiol J. 33(10):906–33. doi:10.1080/01490451.2015.1127447.
  • Boquet E, Boronat A, Ramos-Cormenza A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature. 246:527–9. doi:10.1038/246527a0.
  • Blyth AJ, Frisia S. 2008. Molecular evidence for bacterial mediation of calcite formation in cold high-altitude caves. Geomicrobiol J. 25:101–11. doi:10.1080/01490450801934938.
  • Cacchio P, Ercole C, Cappuccio G, Lepidi A. 2003. Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J. 20(2):85–98. doi:10.1080/01490450303883.
  • Cacchio P, Contento R, Ercole C, Cappuccio G, Martinez MP, Lepidi A. 2004. Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L'Aquila-Italy). Geomicrobiol J. 21:497–509. doi:10.1080/01490450490888109.
  • Cañaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C. 2001. Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J. 18:223–40. doi:10.1080/01490450152467769.
  • Campbell JW, Watson A, Watson C, Ball H, Pirkle R. 2011. Escherichia coli, other coliform, and environmental chemoheterotrophic bacteria in isolated pools from six caves in northern Alabama and northwestern Georgia. J Cave Kar Stud. 75:75–82. doi:10.4311/jcks2009mb0131.
  • Castanier S, Métayer-Levrel GL, Pertuisot JP. 1999. Ca-carbonate precipitation and limestone genesis— the microbiogeologist point of view. Sed Geol. 126:9–23. doi:10.1016/S0037-0738(99)00028-7.
  • Chalia S, Baskar S, Minakshi P, Baskar R, Ranjan K. 2017. Biomineralization abilities of cupriavidus strain and Bacillus subtilis strains in vitro isolated from Speleothems, Rani Cave, Chhattisgarh, India. Geomicrobiol J. 34(9):737–52. doi:10.1080/01490451.2016.1257663.
  • Cox G, James JM, Leggett KEA, Osborne RAL. 1989. Cyanobacterially deposited speleothems: subaerial stromatolites. Geomicrobiol J. 7(4):245–52. doi:10.1080/01490458909377870.
  • Curry MD, Boston PJ, Spilde MN, Baichtal JF, Campbell AR. 2009. Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in Cataract Cave, tongas National Forest, Alaska. Int J Speleol. 38:111–28. doi:10.5038/1827-806X.38.2.3.
  • da Mota FF, Vollú RE, Jurelevicius D, Seldin L. 2016. Whole-genome sequence of Rummeliibacillus stabekisii strain PP9 isolated from Antarctic soil. Genome Announc. 4(3):e00416–6. doi:10.1128/genomeA.00416-16. PMID:27231360.
  • Danielli HMC, Edington MA. 1983. Bacterial calcification in limestone caves. Geomicrobiol J. 3(1):1–16. doi:10.1080/01490458309377780.
  • Davis DG, Palmer MV, Palmer AN. 1990. Extraordinary subaqueous speleothems in Lechuguilla Cave, New Mexico. J Cave Kar Stud. 52:70–86.
  • Davis DG. 2000. Extraordinary features of Lechuguilla Cave, Guadalupe Mountains, New Mexico. J Cave Kar Stud. 62:147–57.
  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W. 2006. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation. 17:357–67. doi:10.1007/s10532-005-9006-x. PMID:16491305.
  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev. 96:141–62. doi:10.1016/j.earscirev.2008.10.005.
  • Engel AS. 2010. Microbial diversity of cave ecosystems. In: Barton LL, Mandl M, Loy A, editors. Geomicrobiology: molecular and environmental perspective. New York: Springer. p. 219–38.
  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. 39(4):783–91.
  • Freytet P, Verrecchia EP. 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukariotic algae. Sedimentology. 45:535–63. doi:10.1046/j.1365-3091.1998.00155.x.
  • Fernandez-Cortes A, Cuezva S, Sanchez-Moral S, Cañaveras J, Porca E, Jurado V, Martin Sanchez P, Saiz-Jimenez C. 2011. Detection of human-induced environmental disturbances in a show cave. Environ Sci Poll Res. 18:1037–45. doi:10.1007/s11356-011-0513-5.
  • Frisia S, Borsato A, Drysdale RN, Paul B, Greig A, Cotte M. 2012. A re-evaluation of the palaeoclimatic significance of phosphorus variability in speleothems revealed by high resolution synchrotron micro XRF mapping. Clim Past. 8:2039–51. doi:10.5194/cp-8-2039-2012.
  • Frisia S. 2015. Microstratigraphic logging of calcite fabrics in speleothems as tool for palaeoclimate studies. Int J Speleol. 44:1–16.
  • Frisia S, Borsato A. 2010. Karst. Carbonates in continental settings: facies, environments, and processes. Developments in sedimentology. vol. 61. Elsevier. p. 269–318.
  • Folk RL. 1965. Some aspects of recrystallization in ancient limestone. Soc Econ Paleont Mineral Spec Publ. 13:14–48.
  • Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW. 2000. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J. 17:305–18. doi:10.1080/782198884.
  • Gonzalez-Muñoz MT, Rodriguez-Navarro C, Martinez-Ruiz F. 2010. Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation. Geol Soc London Sp Publ. 336:31–50. doi:10.1144/SP336.3.
  • Gradzíński M, Chmiel MJ, Lewandowska A, Michalska-Kasperkiewicz B. 2010. Siliciclastic micro-stromatolites in a sandstone cave: role of trapping and binding of detrital particles in formation of cave deposits. Ann Soc Geol Polon. 80(3):303–14.
  • Groth I, Schumann P, Laiz L, Sanchez-Moral S, Canaveras JC, Saiz-Jimenez C. 2001. Geomicrobiological study of the Grotta dei Cervi, Porto Badisco, Italy. Geomicrobiol J. 18:241–58. doi:10.1080/01490450152467778.
  • Heber JR, Sevenson R, Boldman O. 1952. Infrared spectroscopy as a means for identification of bacteria. Science. 116:111–12. doi:10.1126/science.116.3005.111. PMID:14950198.
  • Ikner LA, Toomey RS, Nolan G, Neilson JW, Pryor BM, Maier RM. 2007. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microbial Ecol. 53:30–42. doi:10.1007/s00248-006-9135-8.
  • Jansson C, Northen T. 2010. Calcifying cyanobacteria — the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol. 21(3):365–71. doi:10.1016/j.copbio.2010.03.017. PMID:20456936.
  • Jones B. 1991. Genesis of terrestrial oncoids, Cayman Islands, British West Indies. Canadian J Earth Sci. 28:382–97. doi:10.1139/e91-035.
  • Jones B. 1995. Processes associated with microbial biofilms in the twilight zone of caves: examples from the Cayman Islands. J Sediment Res A. 65:552–60.
  • Jones B. 2009. Mineralized actinomycetes and phosphates in speleothems from Grand Cayman, British West Indies. Sediment Geol. 219:302–17. doi:10.1016/j.sedgeo.2009.05.020.
  • Jones B. 2010. Speleothems in a wave-cut notch, Cayman Brac, British West Indies: the integrated product of subaerial precipitation, dissolution, and microbes. Sediment Geol. 232:15–34. doi:10.1016/j.sedgeo.2010.09.003.
  • Jones B. 2011. Biogenicity of terrestrial oncoids formed in soil pockets, Cayman Brac, British West Indies. Sediment Geol. 236:95–108. doi:10.1016/j.sedgeo.2010.12.009.
  • Jones B, Motyka A. 1987. Biogenic structures and micrite in stalactites from Grand Cayman Island, British West Indies. Can J Earth Sci. 24:1402–11. doi:10.1139/e87-132.
  • Jones B, Kahle CF. 1993. Morphology, relationship, and origin of Žber and dendrite calcite crystals. J Sed Petrol. 63:1018–31.
  • Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, Bedmar EJ, González-Muñoz MT. 2010. Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol. 60:39–54. doi:10.1007/s00248-010-9665-y. PMID:20386895.
  • Jurado V, Laiz L, Sanchez-Moral S, Saiz-Jimenez C. 2014. Pathogenic microorganisms related to human visits in Altamira Cave, Spain. In: Saiz-Jimenez C, editor. The conservation of subterranean cultural heritage. 2014. Taylor and Francis. p. 229–320. ISBN. 978-1-138-02694-0.
  • Kasama T, Murakami T. 2001. The effect of microorganisms on Fe precipitation rates at neutral pH. Chem Geol. 180:117–28. doi:10.1016/S0009-2541(01)00309-6.
  • Kharpran Daly BD. 2006. The caves of Meghalaya. Shillong: The Directorate of Information and Public Relations Government of Meghalaya.
  • Kim O, Cho Y, Lee K, Yoon S, Kim M, Na H, Park S, Jeon Y, Lee J, Yi H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 62:716–21. doi:10.1099/ijs.0.038075-0. PMID:22140171.
  • Lavoie KH, Northup DE. 2006. Bacteria as indicators of human impact in caves. Proceedings of the 2005 National Cave and Karst Management Symposium; Albany, New York. October 31 to November 4, 2005, the NCKMS Steering Committee, Huntsville, AL. p. 40–7.
  • Macalady JL, Banfield J. 2004. Molecular geomicrobiology: genes and geochemical cycling. Earth Plan Sci Lett. 209:1–17. doi:10.1016/S0012-821X(02)01010-5.
  • Macalady JL, Jones DS, Lyon EH. 2007. Extremely acidic, pendulous microbial biofilms from the Frasassi cave system, Italy. Environ Microbiol. 9:1402–14. doi:10.1111/j.1462-2920.2007.01256.x. PMID:17504478.
  • McConnaughey TA, Whelan JF. 1997. Calcification generates protons for nutrient and bicarbonate uptake. Earth-Sci Rev. 42(1–2):95–117. doi:10.1016/S0012-8252(96)00036-0.
  • Melim LA, Shinglman KM, Boston PJ, Northup DE, Spilde MN, Queen JM. 2001. Evidence for microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiol J. 18:311–29. doi:10.1080/01490450152467813.
  • Melim LA, Northup DE, Spilde MN, Jones B, Boston PJ, Bixby RJ. 2008. Reticulated filaments in cave pool speleothems: microbe or mineral? J Cave Karst Stud. 70:135–41.
  • Melim LA, Liescheidt R, Northup DE, Spilde MN, Boston PJ, Queen JM. 2009. A biosignature suite from cave pool precipitates, Cottonwood Cave, New Mexico. Astrobiol. 9(9):907–17. doi:10.1089/ast.2009.0345.
  • Mulec J, Kosi G, Vrhovšek D. 2007. Algae promote growth of stalagmites and stalactites in karst caves (Škocjanske jame, Slovenia). Carbonates Evaporates. 22(1):6–9.
  • Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. App Environ Microbiol. 59:695–700.
  • National Bureau of Soil Survey and Land Use Planning. 1996. Geological map of Meghalaya. [Accessed 15 January 2015]. http://megsoil.gov.in/images/meghalaya_soil_map.jpg.
  • Norris KP. 1959. Infra-red spectroscopy and its application to microbiology. J Hygiene. 57:326–45. doi:10.1017/S0022172400020192.
  • Northup DE, Lavoie KH. 2001. Geomicrobiology of caves: a review. Geomicrobiol J. 18:199–222. doi:10.1080/01490450152467750.
  • Pacton M, Breitenbach SFM, Lechleitner F A, Vaks A, Rollion-Bard C, Gutareva OS, Osintcev AV, Vasconcelos C. 2013. The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia-paleoenvironmental implications. Biogeosciences. 10:6115–30. doi:10.5194/bg-10-6115-2013.
  • Polyak VJ, Cokendolpher JC. 1992. Recovery of microfossils from carbonate speleothems. NSS Bull. 54:66–8.
  • Portillo MC, Porca E, Cuezva S, Sanchez-Moral S, Gonzalez JM. 2009. Is the availability of different nutrients a critical factor for the impact of bacteria on subterraneous carbon budgets? Naturwissenschaften. 96:1035–42. doi:10.1007/s00114-009-0562-5. PMID:19488732.
  • Pflitsch A, Piasecki J. 2003. Detection of an airflow system in Niedzwiedzia (Bear) Cave, Kletno, Poland. J Cave Kar Stud. 65:160–73.
  • Preston LJ, Melim LA, Polyak VJ, Asmerom Y, Southam G. 2014. Infrared Spectroscopic Biosignatures from Hidden Cave, New Mexico: possible applications for remote life detection. Geomicrobiol J. 31(10):929–41. doi:10.1080/01490451.2014.913096.
  • Ramseyer K, Miano T, D'Orazio V, Wildberger A, Wagner T, Geister J. 1997. Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons. Org Geochem. 26:361–78. doi:10.1016/S0146-6380(97)00008-9.
  • Riding R. 1991. Classification of microbial carbonates. In: Riding R, editor. Calcareous algae and stromatolites. Berlin: Springer. p. 21–51.
  • Rivadeneyra MA, Párraga J, Delgado R, Ramos-Cormenzana A, Delgado G. 2004. Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol. 48(1):39–46. doi:10.1016/j.femsec.2003.12.008. PMID:19712429.
  • Robinson JW, Frame EMS, Frame GM II. 2004. Undergraduate instrumental analysis. 6th ed. New York: CRC Press, Taylor and Francis Group. p. 1079.
  • Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S. 2002. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo cave, Spain, and on its Palaeolithic paintings. Environ Microbiol. 4:392–400. doi:10.1046/j.1462-2920.2002.00303.x. PMID:12123475.
  • Schabereiter-Gurtner C, Saiz-Jimenez C, Piñar G, Lubitz W, Rölleke S. 2004. Phylogenetic diversity of bacteria associated with paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiol Ecol. 47:235–47. doi:10.1016/S0168-6496(03)00280-0. PMID:19712338.
  • Stomeo F, Portillo MC, Gonzalez JM. 2009. Assessment of bacterial and fungal growth on natural substrates: consequences for preserving caves with prehistoric paintings. Curr Microbiol. 59:321–5. doi:10.1007/s00284-009-9437-4. PMID:19536596.
  • Sánchez-Román M, Vasconcelos C, Schmid T, Dittrich M, McKenzie JA, Zenobi R. 2008. Aerobic microbial dolomite at the nanometer scale: implications for the geologic record. Geology. 36:879–82. doi:10.1130/G25013A.1.
  • Sanchez-Moral S, Portillo MC, Janices I, Cuezva S, Fernández-Cortés A, Cañaveras JC, Gonzalez JM. 2012. The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology. 139–140:285–92. doi:10.1016/j.geomorph.2011.10.030.
  • Sharma YR. 1989. Elementary organic spectroscopy: principles and chemical applications. New Delhi (India): S. Chand Publisher. p. 294.
  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Bio Evol. 24:1596–99.
  • Thrailkill, JV. 1964. Origin of cave popcorn [abs.]: Bulletin of the National Speleological Society. 27, p. 59.
  • Urzì C, De Leo F, Bruno L, Albertano P. 2010. Microbial diversity in Paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microbial Ecol. 60:116–29. doi:10.1007/s00248-010-9710-x.
  • Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A, et al. 2009. Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al., 2002 as Rummeliibacillus pycnus comb.nov. Int J Syst Evol Microbiol. 59:1094–99. doi:10.1099/ijs.0.006098-0. PMID:19406799.
  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature. 377:220–2. doi:10.1038/377220a0.
  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Marpoff AM. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology. 32:277–80.
  • Zhou J, Gu Y, Zou C, Mo M. 2007. Phylogenetic diversity of bacteria in an earth-cave in Guizhou Province, Southwest of China. J Microbiol. 45:105–12. PMID:17483794.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.