111
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of the pervaporation process for isobutanol purification from aqueous solution using intelligent systems

, &
Pages 1383-1396 | Received 16 Jun 2017, Accepted 13 Nov 2017, Published online: 28 Nov 2017
 

ABSTRACT

In this study, intelligent systems (ANN-GA and GMDH) was employed to develope a model based on experimental data to predict the performance of the pervaporation process. The ANN system was coupled with the genetic algorithm (GA) to choose initial connection weights and biases of the multi-layer feed forward neural network (FFNN). The input parameters were the feed concentration, membrane thickness, and Reynolds number, while the outputs were total flux and permeate concentration. The RMSE of the estimated total flux for the ANN-GA and GMDH were 0.09170 and 0.0903, respectively. Also, the RMSE of estimated permeate concentration for the ANN-GA and GMDH were 0.0994 and 0.0975, respectively. The results indicated that the models had sufficient accuracy, but that GMDH could provide a better outcome. Finally, the relative importance of input variables on the network outputs was determined. Sensitive analysis showed that the membrane thickness and feed concentration are the most effect on the total flux and permeate concentration, respectively. Other variables also have important effect on the PV process and cannot be ignored.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.