111
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Modeling of the pervaporation process for isobutanol purification from aqueous solution using intelligent systems

, &
Pages 1383-1396 | Received 16 Jun 2017, Accepted 13 Nov 2017, Published online: 28 Nov 2017

References

  • Kamiński, W.; Tomczak, E.; Gorak, A. (2011) Biobutanol-production and purification methods. Ecological Chemistry and Engineering., 18 (1): 31–37.
  • Atsumi, S.; Hanai, T.; Liao, J.C. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451 (7174): 86–89. 10.1038/nature06450
  • Qureshi, N.; Maddox, I.S. (1995) Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction. Journal of Fermentation and Bioengineering, 80 (2): 185–189. 10.1016/0922-338X(95)93217-8
  • Omidali, M.; Raisi, A.; Aroujalian, A. (2014) Separation and purification of isobutanol from dilute aqueous solutions by a hybrid hydrophobic/hydrophilic pervaporation process. Chemical Engineering and Processing: Process Intensification, 77: 22–29. 10.1016/j.cep.2014.01.002
  • Vane, L.M.;. (2005) A review of pervaporation for product recovery from biomass fermentation processes. Journal of Chemical Technology & Biotechnology, 80 (6): 603–629. 10.1002/(ISSN)1097-4660
  • Raisi, A.; Aroujalian, A.; Kaghazchi, T. (2009) Experimental study and mass transport modeling of ethanol separation from aqueous solutions by pervaporation. Separation Science and Technology, 44 (15): 3538–3570.
  • Teli, S.B.; Gokavi, G.S.; Tak, T.M.; Aminabhavi, T.M. (2009) Chitosan/gelatin blend membranes for pervaporation dehydration of 1, 4-dioxane. Separation Science and Technology, 44 (13): 3202–3223.
  • Purkait, M.K.; Kumar, V.D.; Maity, D. (2009) Treatment of leather plant effluent using NF followed by RO and permeate flux prediction using artificial neural network. Chemical Engineering Journal, 151 (1): 275–285.
  • Shirazi, Y.; Farno, E.; Majareh, H.S.; Sadrzadeh, M.; Mohammadi, T.; Kasiri, N. (2012) Effect of operating conditions on PV performance of PVA membranes: experimental and neural network modeling. Separation Science and Technology, 47 (10): 1472–1484.
  • Rezakazemi, M.; Razavi, S.; Mohammadi, T.; Nazari, A.G. (2011) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. Journal of Membrane Science, 379 (1): 224–232.
  • Bowen, W.R.; Jones, M.G.; Yousef, H.N. (1998) Dynamic ultrafiltration of proteins–A neural network approach. Journal of Membrane Science, 146 (2): 225–235.
  • Murthy, Z.V.P.; Vengal, J.C. (2006) Optimization of a reverse osmosis system using genetic algorithm. Separation Science and Technology, 41 (4): 647–663.
  • Wang, L.; Shao, C.; Wang, H.; Wu, H. (2006) Radial basis function neural networks-based modeling of the membrane separation process: Hydrogen recovery from refinery gases. Journal of Natural Gas Chemistry, 15 (3): 230–234.
  • Çinar, Ö.; Hasar, H.; Kinaci, C. (2006) Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network. Journal of Biotechnology, 123 (2): 204–209.
  • Sarkar, B.; Sengupta, A.; De, S.; DasGupta, S. (2009) Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration a neural network approach. Separation and Purification Technology, 65 (3): 260–268.
  • Badrnezhad, R.; Mirza, B. (2014) Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach. Journal of Industrial and Engineering Chemistry, 20 (2): 528–543.
  • Shokrian, M.; Sadrzadeh, M.; Mohammadi, T. (2010) C 3H8 separation from CH4 and H2 using a synthesized PDMS membrane: Experimental and neural network modeling. Journal of Membrane Science, 346 (1): 59–70.
  • Tan, M.; He, G.; Li, X.; Liu, Y.; Dong, C.; Feng, J. (2012) Prediction of the effects of preparation conditions on pervaporation performances of polydimethylsiloxane (PDMS)/ceramic composite membranes by backpropagation neural network and genetic algorithm. Separation and Purification Technology, 89: 142–146.
  • Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesús, O. (1996) Neural Network Design, Vol. 20, Boston: PWS publishing company.
  • Madaeni, S.S.; Hasankiadeh, N.T.; Kurdian, A.R.; Rahimpour, A. (2010) Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm. Separation and Purification Technology, 76 (1): 33–43.
  • Bishop, J.M.; Bushnell, M.J.; Usher, A.; Westland, S. (1993 January) Genetic optimisation of neural network architectures for colour recipe prediction. Springer-Verlag/Wien. 719–725.
  • Whitley, D.;. (1994) A genetic algorithm tutorial. Statistics and Computing, 4 (2): 65–85.
  • Ivakhnenko, A.G.;. (1971) Polynomial theory of complex systems. IEEE transactions on Systems, Man, and Cybernetics, (4): 364–378.
  • Reyhani, S.Z.; Ghanadzadeh, H.; Puigjaner, L.; Recances, F. (2009) Estimation of liquid−liquid equilibrium for a quaternary system using the GMDH algorithm. Industrial & Engineering Chemistry Research, 48 (4): 2129–2134.
  • Pazuki, G.; Kakhki, S.S. (2013) A hybrid GMDH neural network to investigate partition coefficients of Penicillin G Acylase in polymer–salt aqueous two-phase systems. Journal of Molecular Liquids, 188: 131–135.
  • Zadeh, L.A.;. (1965) Fuzzy sets. Information and Control, 8 (3): 338–353.
  • Torres, M.; Hervás, C.; Amador, F. (2005) Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms. Computers & Operations Research, 32 (10): 2653–2670.
  • Hornik, K.; Stinchcombe, M.; White, H. (1989) Multilayer feedforward networks are universal approximators. Neural Networks, 2 (5): 359–366.
  • Chellam, S.;. (2005) Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. Journal of Membrane Science, 258 (1): 35–42.
  • Goh, A.T.;. (1994) Seismic liquefaction potential assessed by neural networks. Journal of Geotechnical Engineering, 120 (9): 1467–1480.
  • Mhurchú, J.N.; Foley, G. (2006) Dead-end filtration of yeast suspensions: Correlating specific resistance and flux data using artificial neural networks. Journal of Membrane Science, 281 (1): 325–333.
  • Raisi, A.; Aroujalian, A. (2011) Aroma compound recovery by hydrophobic pervaporation: The effect of membrane thickness and coupling phenomena. Separation and Purification Technology, 82: 53–62.
  • Raisi, A.; Aroujalian, A.; Kaghazchi, T. (2008) Multicomponent pervaporation process for volatile aroma compounds recovery from pomegranate juice. Journal of Membrane Science, 322 (2): 339–348.
  • Atashrouz, S.; Pazuki, G.; Alimoradi, Y. (2014) Estimation of the viscosity of nine nanofluids using a hybrid GMDH-type neural network system. Fluid Phase Equilibria, 372: 43–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.