150
Views
4
CrossRef citations to date
0
Altmetric
Remediation

Sulfonated polypropylene microparticles from waste as adsorbents for methylene blue: Kinetic, equilibrium, and thermodynamic studies

ORCID Icon & ORCID Icon
Pages 2374-2392 | Received 06 Dec 2021, Accepted 04 Apr 2022, Published online: 18 Apr 2022
 

ABSTRACT

Dyes discharged into waste streams have threatened the lives of aquatic ecosystems and human beings. This work studied the effectiveness of converting polypropylene (PP) waste films into sulfonated microparticles (SPP) for removing methylene blue dye (MB) from aqueous solutions. PP waste was recycled into microparticles (8 µm) and sulfonated in sulfuric acid at 100°C for (6 h). FT-IR analysis proved the existence of sulfonic, carboxylic, and C = C groups on the surface of SPP microparticles. The concentration of acid groups, morphology, surface area, and wettability of SPP were investigated. The effects of the adsorbent dosage, contact time, pH of MB solution, temperature, and ionic strength on the adsorption process were studied. The experimental data of the adsorption process fit well with pseudo-second-order kinetic model and Langmuir isotherm disclosing that the adsorption was chemisorption. A maximum adsorption capacity of 45 mg MB g−1 SPP microparticles was realized at 20°C and neutral pH (6.5). The free energy change showed a negative value reflecting the feasibility and spontaneity of the adsorption process. Accordingly, waste PP can be recycled into a valuable adsorbent for the removal of cationic dyes from polluted water after a proper treatment such as sulfonation.

Graphical abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 681.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.