150
Views
4
CrossRef citations to date
0
Altmetric
Remediation

Sulfonated polypropylene microparticles from waste as adsorbents for methylene blue: Kinetic, equilibrium, and thermodynamic studies

ORCID Icon & ORCID Icon
Pages 2374-2392 | Received 06 Dec 2021, Accepted 04 Apr 2022, Published online: 18 Apr 2022

References

  • Choi, H. Assessment of Sulfonation in Lignocellulosic Derived Material for Adsorption of Methylene Blue. Environ. Eng. Res. 2021, 27, 210034. DOI: 10.4491/eer.2021.034.
  • Bakry, A.; Darwish, M. S. A.; Hassanein, T. F. Adsorption of Methylene Blue from Aqueous Solutions Using Carboxyl/nitro-functionalized Microparticles Derived from Polypropylene Waste. Iran. Polym. J. 2021, 1–13. DOI: 10.1007/s13726-021-00979-w.
  • Velusamy, S.; Roy, A.; Sundaram, S.; Kumar Mallick, T. A Review on Heavy Metal Ions and Containing Dyes Removal through Graphene Oxide‐Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. DOI: 10.1002/tcr.202000153.
  • Moradihamedani, P. Recent Advances in Dye Removal from Wastewater by Membrane Technology: A Review. Polym. Bull. 2021, 1–29. DOI: 10.1007/s00289-021-03603-2.
  • Kueasook, R.; Rattanachueskul, N.; Chanlek, N. Microporous and Mesoporous Materials Green and Facile Synthesis of Hierarchically Porous Carbon Monoliths via Surface Self-assembly on Sugarcane Bagasse Scaffold : Influence of Mesoporosity on Efficiency of Dye Adsorption. Microporous Mesoporous Mater. 2020, 296, 110005. DOI: 10.1016/j.micromeso.2020.110005.
  • Khan, M. I.; Su, J.; Guo, L. Development of Triethanolamine Functionalized-anion Exchange Membrane for Adsorptive Removal of Methyl Orange from Aqueous Solution. Desalin. Water Treat. 2021, 209, 342–352. DOI: 10.5004/dwt.2021.26490.
  • Badawi, A. K.; Zaher, K. Hybrid Treatment System for Real Textile Wastewater Remediation Based on Coagulation/flocculation, Adsorption and Filtration Processes: Performance and Economic Evaluation. J. Water Process. Eng. 2021, 40, 101963. DOI: 10.1016/j.jwpe.2021.101963.
  • Wang, S.; Gao, H.; Fang, L.; Hu, Q.; Sun, G.; Chen, X.; Yu, C.; Tang, S.; Yu, X.; Zhao, X. Synthesis of Novel CQDs/CeO2/SrFe12O19 Magnetic Separation Photocatalysts and Synergic Adsorption-photocatalytic Degradation Effect for Methylene Blue Dye Removal. Chem. Eng. J. Adv. 2021, 6, 100089. DOI: 10.1016/j.ceja.2021.100089.
  • Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M. J.; Hussain, M. A State-of-the-art Review on Wastewater Treatment Techniques : The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. 2021, 28, 9050–9066. DOI: 10.1007/s11356-021-12395-x.
  • Abdulhameed, A. S.; Hum, N. N. M. F.; Rangabhashiyam, S.; Jawad, A. H.; Wilson, L. D.; Yaseen, Z. M.; Al-Kahtani, A. A.; ALOthman, Z. A. Statistical Modeling and Mechanistic Pathway for Methylene Blue Dye Removal by High Surface Area and Mesoporous Grass-based Activated Carbon Using K2CO3 Activator. J. Environ. Chem. Eng. 2021, 9, 105530. DOI: 10.1016/j.jece.2021.105530.
  • Chaari, I.; Medhioub, M.; Jamoussi, F.; Hamzaoui, A. H. Acid-treated Clay Materials (Southwestern Tunisia) for Removing Sodium Leuco-vat Dye: Characterization, Adsorption Study and Activation Mechanism. J. Mol. Struct. 2021, 1223, 128944. DOI: 10.1016/j.molstruc.2020.128944.
  • Dahdouh, N.; Amokrane, S.; Murillo, R.; Mekatel, E.; Nibou, D. Removal of Methylene Blue and Basic Yellow 28 Dyes from Aqueous Solutions Using Sulphonated Waste Poly Methyl Methacrylate. J. Polym. Environ. 2020, 28, 271–283. DOI: 10.1007/s10924-019-01605-w.
  • Raza, S.; Wen, H.; Peng, Y.; Zhang, J.; Li, X.; Liu, C. Fabrication of SiO2 Modified Biobased Hydrolyzed Hollow Polymer Particles and Their Applications as a Removal of Methyl Orange Dye and bisphenol-A. Eur. Polym. J. 2021, 144, 110199. DOI: 10.1016/j.eurpolymj.2020.110199.
  • Maddah, H. A. Polypropylene as A Promising Plastic : A Review. Am. J. Polym. Sci. 2016, 6, 1–11. DOI: 10.5923/j.ajps.20160601.01.
  • Darwish, M. S. A. M. S. A.; Bakry, A.; Al-Harbi, L. M. L. M.; Khowdiary, M. M. M. M.; El-Henawy, A. A. A.; Yoon, J. Core/shell PA6@ Fe3O4 Nanofibers: Magnetic and Shielding Behavior. J. Dispers. Sci. Technol. 2020, 41, 1711–1719. DOI: 10.1080/01932691.2019.1635025.
  • Bakry, A.; Aversano, R.; D’Ilario, L.; Di Lisio, V.; Francolini, I.; Piozzi, A.; Martinelli, A. Flexible Aliphatic Poly(isocyanurate-oxazolidone) Resins Based on Poly(ethylene Glycol) Diglycidyl Ether and 4,4′-methylene Dicyclohexyl Diisocyanate. J. Appl. Polym. Sci. 2016, 133. DOI: 10.1002/app.43404.
  • Garcia, J. M.; Robertson, M. L. The Future of Plastics Recycling. Science. 2017, 358, 870–872. DOI: 10.1126/science.aaq0324.
  • Thiounn, T.; Smith, R. C. Advances and Approaches for Chemical Recycling of Plastic Waste. J. Polym. Sci. 2020, 58, 1347–1364. DOI: 10.1002/pol.20190261.
  • Horodytska, O.; Valdés, F. J.; Fullana, A. Plastic Flexible Films Waste management–A State of Art Review. Waste Manag. 2018, 77, 413–425. DOI: 10.1016/j.wasman.2018.04.023.
  • Bora, R. R.; Wang, R.; You, F. Waste Polypropylene Plastic Recycling toward Climate Change Mitigation and Circular Economy: Energy, Environmental, and Technoeconomic Perspectives. ACS Sustain. Chem. Eng. 2020, 8, 6350–16363. DOI: 10.1021/acssuschemeng.0c06311.
  • Morsy, F. A.; Elsayad, S. Y.; Bakry, A.; Eid, M. A. Surface Properties and Printability of Polypropylene Film Treated by an Air Dielectric Barrier Discharge Plasma. Surf. Coatings Int. Part B Coatings Trans. 2006, 89, 49–55. DOI: 10.1007/BF02699614.
  • Casini, G.; Petrone, L.; Bakry, A.; Francolini, I.; Di Bonito, P.; Giorgi, C.; Martinelli, A.; Piozzi, A.; D’Ilario, L. Functionalized Poly(l-lactide) Single Crystals Coated with Antigens in Development of Vaccines. J. Control. Release. 2010, 148, e105–e111. DOI: 10.1016/j.jconrel.2010.07.080.
  • Bakry, A. Synergistic Effects of Surface Aminolysis and Hydrolysis on Improving Fibroblast Cell Colonization within Poly (L‐lactide) Scaffolds. J. Appl. Polym. Sci. 2021, 138, 49643. DOI: 10.1002/app.49643.
  • Sabar, S.; Abdul Aziz, H.; Yusof, N. H.; Subramaniam, S.; Foo, K. Y.; Wilson, L. D.; Lee, H. K. Preparation of Sulfonated Chitosan for Enhanced Adsorption of Methylene Blue from Aqueous Solution. React. Funct. Polym. 2020, 151, 104584. DOI: 10.1016/j.reactfunctpolym.2020.104584.
  • Bakry, A.; Darwish, M. S. A. Hyaluronic Acid and Chitosan Surface Grafted Polylactide Single Crystals as Hydrophilic Building Blocks for Scaffold Materials. Polym. Sci. Ser. A. 2018, 60, 757–769. DOI: 10.1134/S0965545X18070015.
  • Poulakis, J. G.; Papaspyrides, C. D. Recycling of Polypropylene by the Dissolution/reprecipitation Technique: I. A Model Study. Resour. Conserv. Recycl. 1997, 20, 31–41. DOI: 10.1016/S0921-3449(97)01196-8.
  • Bakry, A. Synergistic Effects of Surface Grafting with Heparin and Addition of Poly(d,l-lactide) Microparticles on Properties of Poly(l-lactide) Single Crystals Scaffolds. J. Appl. Polym. Sci. 2019, 136, 47797. DOI: 10.1002/app.47797.
  • Elzoghby, A. A.; Bakry, A.; Masoud, A. M.; Mohamed, W. S.; Taha, M. H.; Hassanein, T. F. Synthesis of Polyamide-based Nanocomposites Using Green-synthesized Chromium and Copper Oxides Nanoparticles for the Sorption of Uranium from Aqueous Solution. J. Environ. Chem. Eng. 2021, 9, 106755. DOI: 10.1016/j.jece.2021.106755.
  • Tada, H.; Ito, S. Conformational Change Restricted Selectivity in the Surface Sulfonation of Polypropylene with Sulfuric Acid. Langmuir. 1997, 13, 3982–3989. DOI: 10.1021/la960885l.
  • Matos, J. P.; Terezinha, M.; Sansiviero, C.; Lago, R. M. Surface Chemical Modification of Polypropylene Fiber Waste by H 2 SO 4 : Mechanistic Investigation and Application as Cation-Exchange Adsorbent. J. Appl. Polym. Sci. 2010, 115, 3586–3591. DOI: 10.1002/app.
  • Ecevit, S. T.; Aras, L.; Tinçer, T. Synthesis and Characterization of Surface Sulfonated Polypropylene Films. J. Adhes. Sci. Technol. 2008, 22, 1285–1299. DOI: 10.1163/156856108X319818.
  • Haji, A.; Shoushtari, A. M.; Abdouss, M. Desalination and Water Treatment Plasma Activation and Acrylic Acid Grafting on Polypropylene Nonwoven Surface for the Removal of Cationic Dye from Aqueous Media. Desalin. Water Treat. 2015, 53, 3632–3640. DOI: 10.1080/19443994.2013.873350.
  • Bakry, A.; Darwish, M. S. A.; El Naggar, A. M. A. Assembling of Hydrophilic and Cytocompatible Three-dimensional Scaffolds Based on Aminolyzed Poly(l-lactide) Single Crystals. New J. Chem. 2018, 42, 16930–16939. DOI: 10.1039/c8nj03205j.
  • Bakry, A.; Martinelli, A.; Bizzarri, M.; Cucina, A.; D’Ilario, L.; Francolini, I.; Piozzi, A.; Proietti, S. A New Approach for the Preparation of Hydrophilic poly(L-lactide) Porous Scaffold for Tissue Engineering by Using Lamellar Single Crystals. Polym. Int. 2012, 61, 1177–1185. DOI: 10.1002/pi.4197.
  • Morshedy, A. S.; Taha, M. H.; Abd El-Aty, D. M.; Bakry, A.; El Naggar, A. M. A. Solid Waste Sub-driven Acidic Mesoporous Activated Carbon Structures for Efficient Uranium Capture through the Treatment of Industrial Phosphoric Acid. Environ. Technology. Innovations. 2021, 21, 101363. DOI: 10.1016/j.eti.2021.101363.
  • Aranberri-Askargorta, I.; Lampke, T.; Bismarck, A. Wetting Behavior of Flax Fibers as Reinforcement for Polypropylene. J. Colloid Interface Sci. 2003, 263, 580–589. DOI: 10.1016/S0021-9797(03)00294-7.
  • Vadivelan, V.; Kumar, K. V. Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Husk. J. Colloid Interface Sci. 2005, 286, 90–100. DOI: 10.1016/j.jcis.2005.01.007.
  • Bromide-modi, D.; Munir, M.; Nazar, M. F.; Zafar, M. N.; Zubair, M.; Ashfaq, M.; Hosseini-bandegharaei, A.; Khan, S. U.; Ahmad, A. Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS Omega. 2020, 5, 16711–16721. DOI: 10.1021/acsomega.0c01613.
  • Won, S. W.; Vijayaraghavan, K.; Mao, J.; Kim, S.; Yun, Y. S. Reinforcement of Carboxyl Groups in the Surface of Corynebacterium Glutamicum Biomass for Effective Removal of Basic Dyes. Bioresour. Technol. 2009, 100, 6301–6306. DOI: 10.1016/j.biortech.2009.07.063.
  • Lagergren, S. K. About the Theory of So-called Adsorption of Soluble Substances. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Weber, W. J., and Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–60. DOI:10.1061/JSEDAI.0000430.
  • Low, M. J. D. Kinetics of Chemisorption of Gases on Solids. Chem. Rev. 1960, 60, 267–312. DOI: 10.1021/cr60205a003.
  • Fan, S.; Wang, Y.; Wang, Z.; Tang, J.; Tang, J.; Li, X. Removal of Methylene Blue from Aqueous Solution by Sewage Sludge-derived Biochar: Adsorption Kinetics, Equilibrium, Thermodynamics and Mechanism. J. Environ. Chem. Eng. 2017, 5, 601–611. DOI: 10.1016/j.jece.2016.12.019.
  • Lv, Q.; Qiu, Y.; Wu, M.; Wang, L. Poly (Acrylic Acid)/ Poly (Acrylamide) Hydrogel Adsorbent for Removing Methylene Blue. J. Appl. Polym. Sci. 2020, 137, 49322. DOI: 10.1002/app.49322.
  • Pandey, P. K.; Sharma, S. K.; Sambi, S. S. Kinetics and Equilibrium Study of Chromium Adsorption on Zeolitenax. Int. J. Environ. Sci. Technol. 2010, 7, 395–404. DOI: 10.1007/BF03326149.
  • Sadeghi, S.; Raki, G.; Amini, A.; Mengelizadeh, N.; Amin, M. M. Study of the Effectiveness of the Third Generation Polyamide- Amine and Polypropylene Imine Dendrimers in Removal of Reactive Blue 19 Dye from Aqueous Solutions. Environ. Heal. Eng. Manag. J. 2018, 5, 197–203. DOI: 10.15171/EHEM.2018.27.
  • Mustafa, I. Methylene Blue Removal from Water Using H 2 SO 4 Crosslinked Magnetic Chitosan Nanocomposite Beads. Microchem. J. 2019, 144, 397–402. DOI: 10.1016/j.microc.2018.09.032.
  • Jedynak, K.; Repelewicz, M. Adsorption of Methylene Blue and Malachite Green on Micro-mesoporous Carbon Materials. Adsorpt. Sci. Technol. 2017, 35, 499–506. DOI: 10.1177/0263617417698706.
  • Jiaqi, Z.; Yimin, D.; Danyang, L.; Shengyun, W.; Liling, Z.; Yi, Z. Synthesis of Carboxyl-functionalized Magnetic Nanoparticle for the Removal of Methylene Blue. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 572, 58–66. DOI: 10.1016/j.colsurfa.2019.03.095.
  • Crini, G. Kinetic and Equilibrium Studies on the Removal of Cationic Dyes from Aqueous Solution by Adsorption onto a Cyclodextrin Polymer. Dye. Pigm. 2008, 77, 415–426. DOI: 10.1016/j.dyepig.2007.07.001.
  • Zhao, W.; Jiao, Y.; Gao, R.; Wu, L.; Cheng, S.; Zhuang, Q.; Xie, A.; Dong, W. Sulfonate-grafted Conjugated Microporous Polymers for Fast Removal of Cationic Dyes from Water. Chem. Eng. J. 2020, 391, 123591. DOI: 10.1016/j.cej.2019.123591.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.