288
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-metallic electrocatalysts as emerging class of materials: opportunities and challenges in the synthesis, characterization, and applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 10 Jun 2023, Accepted 20 Apr 2024, Published online: 28 May 2024
 

ABSTRACT

Nowadays, extensive efforts have been devoted to the fabrication and design of metalbased catalysts with high activity, selectivity, and stability. Theoretical and experimental investigations have empowered the construction of a variety of techniques to tune the catalytic efficiency of catalysts by monitoring their size, morphology, composition, and crystal structure. Multimetal catalysts (MMCs) provide a revolutionary synergistic effect between metals, which is a promising strategy to tune and enhance the catalysts’ productivity and product selectivity. The purpose of this article is to familiarize readers with the most uptodate information regarding the synthesis and classification of MMCs. The key roles of MMCs electrocatalysts in a variety of applications such as CO2 conversion via electrochemical CO2 reduction reaction (ECO2RR), H2 evolution reaction (HER), O2 evolution reaction (OER), O2 reduction reaction (ORR), N2 reduction reaction (NRR), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), formic acid oxidation reaction (FAOR), and urea oxidation reaction (UOR) are summarized. This review also addressed the challenges and prospects for multimetallic catalyst design, characterization, and applications. This review article will provide a clear roadmap for the research and progress of multimetallic catalysts for electrocatalytic applications.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Acknowledgments

The author would like to acknowledge the support provided by the Saudi Aramco ChairProgram (ORCP2390), KFUPM Consortium for Sustainable Future, and Prince Sultan University for a Sustainable Future.

Additional information

Funding

This work was supported by the Saudi Aramco [ORCP2390].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,579.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.