288
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-metallic electrocatalysts as emerging class of materials: opportunities and challenges in the synthesis, characterization, and applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 10 Jun 2023, Accepted 20 Apr 2024, Published online: 28 May 2024

References

  • Wu, L.; Ning, M.; Xing, X.; Wang, Y.; Zhang, F.; Gao, G.; Song, S.; Wang, D.; Yuan, C.; Yu, L., et al. Boosting Oxygen Evolution Reaction of (Fe,Ni)OOH via Defect Engineering for Anion Exchange Membrane Water Electrolysis Under Industrial Conditions. Adv. Mater. 2023, 35(44), 2306097. DOI: 10.1002/adma.202306097.
  • Yang, M.; Wang, X.; Gómez-García, C. J.; Jin, Z.; Xin, J.; Cao, X.; Ma, H.; Pang, H.; Tan, L.; Yang, G., et al. Efficient Electron Transfer from an Electron-Reservoir Polyoxometalate to Dual-Metal-Site Metal-Organic Frameworks for Highly Efficient Electroreduction of Nitrogen. Adv. Funct. Mater. 2023, 33(28), 2214495. DOI: 10.1002/adfm.202214495.
  • Wulan, B.; Cao, X.; Tan, D.; Shu, X.; Zhang, J. Atomic Bridging of Metal-Nitrogen-Carbon toward Efficient Integrated Electrocatalysis. Adv. Funct. Mater. 2022, 32(33), 2203842. DOI: 10.1002/adfm.202203842.
  • Yaseen, M.; Shakirullah, M.; Ahmad, I.; Rahman, A. U.; Rahman, F. U.; Usman, M.; Razzaq, R. Simultaneous Operation of Dibenzothiophene Hydrodesulfurization and Methanol Reforming Reactions over Pd Promoted Alumina Based Catalysts. J. Fuel Chem. Technol. 2012, 40(6), 714–720. DOI: 10.1016/S1872-5813(12)60027-9.
  • Helal, A.; Cordova, K. E.; Arafat, M. E.; Usman, M.; Yamani, Z. H. Defect-engineering a metal–organic Framework for CO2 Fixation in the Synthesis of Bioactive Oxazolidinones. Inorg. Chem. Front. 2020, 7(19), 3571–3577. DOI: 10.1039/D0QI00496K.
  • Usman, M.;. Recent Progress of SAPO-34 Zeolite Membranes for CO2 Separation: A Review. Membranes. 2022, 12(5), 507. DOI: 10.3390/membranes12050507.
  • Ala’a, F. E.; Qaroush, A. K.; Hasan, A. K.; Assaf, K. I.; Feda’a, M.; Melhem, M. E.; Al-Maythalony, B. A.; Usman, M. Cross-linked, porous imidazolium-based poly(ionic liquid)s for CO2 capture and utilisation. New J. Chem. 2021, 45(36), 16452–16460. DOI: 10.1039/D1NJ02946K.
  • Rasheed, T.;. 3D MXenes as Promising Alternatives for Potential Electrocatalysis Applications: Opportunities and Challenges. J. Mater. Chem. C. 2022, 10(26), 9669–9690. DOI: 10.1039/D2TC01542K.
  • Rasheed, T.; Ahmad Hassan, A.; Ahmad, T.; Khan, S.; Sher, F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem. Asian J. 2023, 18(13), e202300196. DOI: 10.1002/asia.202300196.
  • Rasheed, T.; Anwar, M. T. Metal Organic Frameworks as self-sacrificing Modalities for Potential Environmental Catalysis and Energy Applications: Challenges and Perspectives. Coord. Chem. Rev. 2023, 480, 215011. DOI: 10.1016/j.ccr.2022.215011.
  • Su, J. F.; Ahmad, M. S.; Kuan, W.-F.; Chen, C.-L.; Rasheed, T. Electrochemical Nitrate Reduction over Bimetallic Pd–Sn Nanocatalysts with Tunable Selectivity toward Benign Nitrogen. Chemosphere. 2024, 350, 141182. DOI: 10.1016/j.chemosphere.2024.141182.
  • Abdinejad, M.; Irtem, E.; Farzi, A.; Sassenburg, M.; Subramanian, S.; Iglesias van Montfort, H.-P.; Ripepi, D.; Li, M.; Middelkoop, J.; Seifitokaldani, A., et al. CO2 Electrolysis via Surface-Engineering Electrografted Pyridines on Silver Catalysts. ACS Catal. 2022, 12(13), 7862–7876. DOI: 10.1021/acscatal.2c01654.
  • Afonso, R. V.; Gouveia, J. D.; Gomes, J. R. B. Catalytic Reactions for H2 Production on Multimetallic Surfaces: A Review. J. Phys. 2021, 3, 032016.
  • Fajín, J. L. C.; Cordeiro, M. N. D. S.; Gomes, J. R. B. Water Dissociation on Multimetallic Catalysts. Appl. Catal. B Environ. 2017, 218, 199–207. DOI: 10.1016/j.apcatb.2017.06.050.
  • Marwat, M. A.; Humayun, M.; Afridi, M. W.; Zhang, H.; Abdul Karim, M. R.; Ashtar, M.; Usman, M.; Waqar, S.; Ullah, H.; Wang, C., et al. Advanced Catalysts for Photoelectrochemical Water Splitting. ACS Appl. Energy Mater. 2021, 4(11), 12007–12031. DOI: 10.1021/acsaem.1c02548.
  • Minteer, S. D.; Christopher, P.; Linic, S. Recent Developments in Nitrogen Reduction Catalysts: A Virtual Issue. ACS Energy Lett. 2018, 4(1), 163–166. DOI: 10.1021/acsenergylett.8b02197.
  • Rezki, M.; Septiani, N. L. W.; Iqbal, M.; Adhika, D. R.; Wenten, I. G.; Yuliarto, B. Review—Recent Advance in Multi-Metallic Metal Organic Frameworks (MM-MOFs) and Their Derivatives for Electrochemical Biosensor Application. J. Electrochem. Soc. 2022, 169(1), 017504. DOI: 10.1149/1945-7111/ac3713.
  • Lyu, F.; Wang, Q.; Choi, S. M.; Yin, Y. Noble-Metal-Free Electrocatalysts for Oxygen Evolution. Small. 2019, 15(1), 1804201. DOI: 10.1002/smll.201804201.
  • Gong, Y.-N.; Jiao, L.; Qian, Y.; Pan, C.-Y.; Zheng, L.; Cai, X.; Liu, B.; Yu, S.-H.; Jiang, H.-L. Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting Co 2 Reduction. Angew. Chem. Int. Ed. 2020, 59(7), 2705–2709. DOI: 10.1002/anie.201914977.
  • Tan, D.; Xiong, H.; Zhang, T.; Fan, X.; Wang, J.; Xu, F. Recent Progress in noble-metal-free Electrocatalysts for Alkaline Oxygen Evolution Reaction. Front. Chem. 2022, 10, 1071274. DOI: 10.3389/fchem.2022.1071274.
  • Han, L.; Cheng, H.; Liu, W.; Li, H.; Ou, P.; Lin, R.; Wang, H.-T.; Pao, C.-W.; Head, A. R.; Wang, C.-H. A single-atom Library for Guided Monometallic and concentration-complex Multimetallic Designs. Nat. Mater. 2022, 21(6), 681–688. DOI: 10.1038/s41563-022-01252-y.
  • Dastafkan, K.; Shen, X.; Hocking, R. K.; Meyer, Q.; Zhao, C. Monometallic Interphasic Synergy via nano-hetero-interfacing for Hydrogen Evolution in Alkaline Electrolytes. Nat. Commun. 2023, 14(1), 547. DOI: 10.1038/s41467-023-36100-3.
  • Toan, T. T. T.; Dao, A. Q.; Vasseghian, Y. Latest Insights on metal-based Catalysts in the Electrocatalysis Processes: Challenges and Future Perspectives. Mol. Catal. 2023, 538, 113001. DOI: 10.1016/j.mcat.2023.113001.
  • Kim, H.; Yoo, T. Y.; Bootharaju, M. S.; Kim, J. H.; Chung, D. Y.; Hyeon, T. Noble Metal‐based Multimetallic Nanoparticles for Electrocatalytic Applications. Adv. Sci. 2022, 9(1), 2104054. DOI: 10.1002/advs.202104054.
  • Yusuf, B. A.; Yaseen, W.; Xie, J.; Babangida, A. A.; Muhammad, A. I.; Xie, M.; Xu, Y. Rational Design of Noble metal-based Multimetallic Nanomaterials: A Review. Nano Energy. 2022, 104, 107959.
  • Chen, Z.; Zhang, G.; Chen, H.; Prakash, J.; Zheng, Y.; Sun, S. Multi-metallic Catalysts for the Electroreduction of Carbon Dioxide: Recent Advances and Perspectives. Renewable Sustainable Energy Rev. 2022, 155, 111922. DOI: 10.1016/j.rser.2021.111922.
  • Zhang, N.; Amorim, I.; Liu, L. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting. Nanotechnol. 2022, 33(43), 432004. DOI: 10.1088/1361-6528/ac8060.
  • Ullah, L.; Zhao, G.; Ma, J.-X.; Usman, M.; Khan, R.; Hedin, N. Pd-promoted Heteropolyacid on Mesoporous Zirconia as a Stable and Bifunctional Catalyst for Oxidation of Thiophenes. Fuel. 2022, 310, 122462. DOI: 10.1016/j.fuel.2021.122462.
  • Usman, M.; Helal, A.; Abdelnaby, M. M.; Alloush, A. M.; Zeama, M.; Yamani, Z. H. Trends and Prospects in UiO-66 Metal-Organic Framework for CO2 Capture, Separation, and Conversion. Chem. Rec. 2021, 21(7), 1771–1791. DOI: 10.1002/tcr.202100030.
  • Afewerki, S.; Edlund, U. Unlocking the Power of Multicatalytic Synergistic Transformation: Toward Environmentally Adaptable Organohydrogel. Adv. Mater. 2024, 36(3), 2306657. DOI: 10.1002/adma.202306657.
  • Luo, M.; Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2017, 2(11), 17059. DOI: 10.1038/natrevmats.2017.59.
  • Khan, N. A.; Humayun, M.; Usman, M.; Ghazi, Z. A.; Naeem, A.; Khan, A.; Khan, A. L.; Tahir, A. A.; Ullah, H. Structural Characteristics and Environmental Applications of Covalent Organic Frameworks. Energies. 2021, 14(8), 2267. DOI: 10.3390/en14082267.
  • Garba, M. D.; Usman, M.; Khan, S.; Shehzad, F.; Galadima, A.; Ehsan, M. F.; Ghanem, A. S.; Humayun, M. CO2 Towards Fuels: A Review of Catalytic Conversion of Carbon Dioxide to Hydrocarbons. J. Environ. Chem. Eng. 2021, 9(2), 104756. DOI: 10.1016/j.jece.2020.104756.
  • Khan, I.; Usman, M.; Imran, M.; Saeed, K. Nanoclay-mediated Photocatalytic Activity Enhancement of Copper Oxide Nanoparticles for Enhanced Methyl Orange Photodegradation. J. Mater. Sci: Mater. Electron. 2020, 31, 8971–8985.
  • Ehsan, M. F.; Fazal, A.; Hamid, S.; Arfan, M.; Khan, I.; Usman, M.; Shafiee, A.; Ashiq, M. N. CoFe2O4 Decorated g-C3N4 Nanosheets: New Insights into Superoxide Anion Mediated Photomineralization of Methylene Blue. J. Environ. Chem. Eng. 2020, 8(6), 104556. DOI: 10.1016/j.jece.2020.104556.
  • Shen, S.; Han, C.; Wang, B.; Du, Y.; Wang, Y. Dual Active sites-dependent Syngas Proportions from Aqueous CO2 Electroreduction. Appl. Catal. B. 2020, 279, 119380. DOI: 10.1016/j.apcatb.2020.119380.
  • Usman, M.; Li, D.; Razzaq, R.; Latif, U.; Muraza, O.; Yamani, Z. H.; Al-Maythalony, B. A.; Li, C.; Zhang, S. Poly Aromatic Hydrocarbon (Naphthalene) Conversion into Value Added Chemical (Tetralin): Activity and Stability of MoP/AC Catalyst. J. Environ. Chem. Eng. 2018, 6(4), 4525–4530. DOI: 10.1016/j.jece.2018.06.053.
  • Zhao, Z.; Liu, H.; Gao, W.; Xue, W.; Liu, Z.; Huang, J.; Pan, X.; Huang, Y. Surface-engineered PtNi-O Nanostructure with record-high Performance for Electrocatalytic Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2018, 140(29), 9046–9050. DOI: 10.1021/jacs.8b04770.
  • Du, R.; Jin, W.; Hübner, R.; Zhou, L.; Hu, Y.; Eychmüller, A. Engineering Multimetallic Aerogels for pH-Universal HER and ORR Electrocatalysis. Adv. Energy Mater. 2020, 10(12), 1903857. DOI: 10.1002/aenm.201903857.
  • Park, J.; Choi, S.; Oh, A.; Jin, H.; Joo, J.; Baik, H.; Lee, K. Hemi-core@frame AuCu@IrNi nanocrystals as active and durable bifunctional catalysts for the water splitting reaction in acidic media. Nanoscale Horiz. 2019, 4(3), 727–734. DOI: 10.1039/C8NH00520F.
  • Usman, M.; Zeb, Z.; Ullah, H.; Suliman, M. H.; Humayun, M.; Ullah, L.; Shah, S. N. A.; Ahmed, U.; Saeed, M. A Review of metal-organic frameworks/graphitic Carbon Nitride Composites for solar-driven Green H2 Production, CO2 Reduction, and Water Purification. J. Environ. Chem. Eng. 2022, 10(3), 107548. DOI: 10.1016/j.jece.2022.107548.
  • Jiang, S.; Chen, F.; Zhu, L.; Yang, Z.; Lin, Y.; Xu, Q.; Wang, Y. Insight into the Catalytic Activity of Amorphous Multimetallic Catalysts under a Magnetic Field toward the Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces. 2022, 14(8), 10227–10236. DOI: 10.1021/acsami.1c19936.
  • Borisov, G.; Bachvarov, V.; Penchev, H.; Rashkov, R.; Slavcheva, E. Multi-metallic Electrodeposited Catalysts Applicable for Oxygen Evolution Reaction in AEM Water Electrolysis. Mater. Lett. 2021, 286, 129248. DOI: 10.1016/j.matlet.2020.129248.
  • Kim, T.; Kim, B.; Kwon, T.; Kim, H. Y.; Kim, J. Y.; Lee, K. Multimetallic nanostructures for electrocatalytic oxygen evolution reaction in acidic media. Mater. Chem. Front. 2021, 5(12), 4445–4473. DOI: 10.1039/D1QM00138H.
  • Fang, H.; Bian, H.; Hu, B.; Liu, J.; Li, S.; Wang, M.; He, L.; Zhang, Z. Multimetallic Electrocatalysts of FeCoNi Nanoalloy Embedded in Multilayered Carbon Nanotubes for Oxygen Reduction Reaction and Flexible Zn-air Battery. Appl. Surf. Sci. 2022, 604, 154590. DOI: 10.1016/j.apsusc.2022.154590.
  • Wang, W.; Lei, B.; Guo, S. Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Adv. Energy Mater. 2016, 6(17), 1600236. DOI: 10.1002/aenm.201600236.
  • Suliman, M. H.; Yamani, Z. H.; Usman, M. Electrochemical Reduction of CO2 to C1 and C2 Liquid Products on Copper-Decorated Nitrogen-Doped Carbon Nanosheets. Nanomater. 2023, 13(1), 47. DOI: 10.3390/nano13010047.
  • Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. Shape-Control of Pt-Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation. J. Am. Chem. Soc. 2018, 140(3), 1142–1147. DOI: 10.1021/jacs.7b12353.
  • Chen, S.; Su, H.; Wang, Y.; Wu, W.; Zeng, J. Size-Controlled Synthesis of Platinum–Copper Hierarchical Trigonal Bipyramid Nanoframes. Angew. Chem. Int. Ed. 2015, 54(1), 108–113. DOI: 10.1002/anie.201408399.
  • Ruditskiy, A.; Peng, H. C.; Xia, Y. Shape-Controlled Metal Nanocrystals for Heterogeneous Catalysis, Annual Review of Chemical and Biomolecular Engineering. Annu Rev Chem Biomol Eng. 2016, 7, 327–348.
  • Wang, Q.; Chen, S.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W., et al. Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Pt-Skin Surface via Space-Confined Pyrolysis and the Nanoscale Kirkendall Effect. Adv. Mater. 2016, 28(48), 10673–10678. DOI: 10.1002/adma.201603509.
  • Humayun, M.; Ullah, H.; Usman, M.; Habibi-Yangjeh, A.; Tahir, A. A.; Wang, C.; Luo, W. Perovskite-type lanthanum ferrite based photocatalysts: Preparation, properties, and applications. J. Energy Chem. 2022, 66, 314–338. DOI: 10.1016/j.jechem.2021.08.023.
  • Usman, M.; Li, D.; Razzaq, R.; Yaseen, M.; Li, C.; Zhang, S. Novel MoP/HY Catalyst for the Selective Conversion of Naphthalene to Tetralin. J. Ind. Eng. Chem. 2015, 23, 21–26. DOI: 10.1016/j.jiec.2014.08.033.
  • Usman, M.; Li, D.; Li, C.; Zhang, S. Highly Selective and Stable Hydrogenation of Heavy aromatic-naphthalene over Transition Metal Phosphides. Sci. China Chem. 2015, 58(4), 738–746. DOI: 10.1007/s11426-014-5199-3.
  • Razzaq, R.; Li, C.; Usman, M.; Suzuki, K.; Zhang, S. A Highly Active and Stable Co4N/γ-Al2O3 Catalyst for CO and CO2 Methanation to Produce Synthetic Natural Gas (SNG. Chem. Eng. J. 2015, 262, 1090–1098. DOI: 10.1016/j.cej.2014.10.073.
  • Helal, A.; Sanhoob, M. A.; Hoque, B.; Usman, M.; Zahir, M. H. Bimetallic Metal-Organic Framework Derived Nanocatalyst for CO2 Fixation through Benzimidazole Formation and Methanation of CO2. Catalysts. 2023, 13(2), 357. DOI: 10.3390/catal13020357.
  • Zhang, B.; Fu, G.; Li, Y.; Liang, L.; Grundish, N. S.; Tang, Y.; Goodenough, J. B.; Cui, Z. General Strategy for Synthesis of Ordered Pt 3 M Intermetallics with Ultrasmall Particle Size. Angew. Chem. Int. Ed. 2020, 59(20), 7857–7863. DOI: 10.1002/anie.201916260.
  • Li, Q.; Wu, L.; Su, D.; Lv, H.; Zhang, S.; Zhu, W.; Casimir, A.; Zhu, H.; Mendoza-Garcia, A.; Sun, S. New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Lett. 2015, 15(4), 2468–2473.
  • Dionigi, F.; Weber, C. C.; Primbs, M.; Gocyla, M.; Bonastre, A. M.; Spöri, C.; Schmies, H.; Hornberger, E.; Kühl, S.; Drnec, J., et al. Controlling Near-Surface Ni Composition in Octahedral PtNi(Mo) Nanoparticles by Mo Doping for a Highly Active Oxygen Reduction Reaction Catalyst. Nano Lett. 2019, 19(10), 6876–6885. DOI: 10.1021/acs.nanolett.9b02116.
  • Pedersen, A.; Barrio, J.; Li, A.; Jervis, R.; Brett, D. J. L.; Titirici, M. M.; Stephens, I. E. L. Dual-Metal Atom Electrocatalysts: Theory, Synthesis, Characterization, and Applications. Adv. Energy Mater. 2022, 12(3), 2102715. DOI: 10.1002/aenm.202102715.
  • Zeng, J.; Fiorentin, M. R.; Fontana, M.; Castellino, M.; Risplendi, F.; Sacco, A.; Cicero, G.; Farkhondehfal, M. A.; Drago, F.; Pirri, C. F. Novel Insights into Sb-Cu Catalysts for Electrochemical Reduction of CO2. Appl. Catal. B Environ. 2022, 306, 121089. DOI: 10.1016/j.apcatb.2022.121089.
  • Maity, R.; Birenheide, B. S.; Breher, F.; Sarkar, B. Cooperative Effects in Multimetallic Complexes Applied in Catalysis. ChemCatChem. 2021, 13(10), 2337–2370. DOI: 10.1002/cctc.202001951.
  • Grefe, L.; Mejía, E. Earth-abundant Bimetallic and Multimetallic Catalysts for Epoxide/CO2 ring-opening Copolymerization. Tetrahedron. 2021, 98, 132433. DOI: 10.1016/j.tet.2021.132433.
  • Shoshani, M. M. Cooperative Heterometallic Platforms Enabling Selective C–H Bond Activation and Functionalization of Pyridines. Cell Rep. Phys. Sci. 2023, 4(4), 101213.
  • Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Recent Progress in Asymmetric Bifunctional Catalysis Using Multimetallic Systems. Acc. Chem. Res. 2009, 42(8), 1117–1127. DOI: 10.1021/ar9000108.
  • Pietrzak, M.; Ivanova, P. Bimetallic and Multimetallic Nanoparticles as Nanozymes. Sens. Actuators B Chem. 2021, 336, 129736. DOI: 10.1016/j.snb.2021.129736.
  • Ning, C.; Bai, S.; Wang, J.; Li, Z.; Han, Z.; Zhao, Y.; O’Hare, D.; Song, Y.-F. Review of photo- and electro-catalytic multi-metallic layered double hydroxides. Coord. Chem. Rev. 2023, 480, 215008. DOI: 10.1016/j.ccr.2022.215008.
  • Kobylarczyk, J.; Kuzniak, E.; Liberka, M.; Chorazy, S.; Sieklucka, B.; Podgajny, R. Modular approach towards functional multimetallic coordination clusters. Coord. Chem. Rev. 2020, 419, 213394.
  • Han, Z.; Wang, A.-J.; Zhang, L.; Wang, Z.-G.; Fang, K.-M.; Yin, -Z.-Z.; Feng, -J.-J. 3D Highly Branched PtCoRh Nanoassemblies: Glycine-assisted Solvothermal Synthesis and Superior Catalytic Activity for Alcohol Oxidation. J. Colloid Interface Sci. 2019, 554, 512–519. DOI: 10.1016/j.jcis.2019.07.030.
  • Sun, H.; Chen, M.; Xiao, B.; Zhou, T.; Humayun, M.; Li, L.; Lu, Q.; He, T.; Zhang, J.; Bououdina, M. Interface Engineering Induced Electron Redistribution at Pt Ns/NiTe-Ns Interfaces for Promoting pH-Universal and Chloride-Tolerant Hydrogen Evolution Reaction. Small. 2023, 19(49), 2303974. DOI: 10.1002/smll.202303974.
  • Li, F.; Tian, Y.; Su, S.; Wang, C.; Li, D.-S.; Cai, D.; Zhang, S. Theoretical and Experimental Exploration of tri-metallic Organic Frameworks (t-MOFs) for Efficient Electrocatalytic Oxygen Evolution Reaction. Appl. Catal. B Environ. 2021, 299, 120665. DOI: 10.1016/j.apcatb.2021.120665.
  • Ren, G.; Zhang, Z.; Liu, Y.; Liang, Y.; Zhang, X.; Wu, S.; Shen, J. One-pot Solvothermal Preparation of Ternary PdPtNi Nanostructures with Spiny Surface and Enhanced Electrocatalytic Performance during Ethanol Oxidation. J. Alloys Compd. 2020, 830, 154671. DOI: 10.1016/j.jallcom.2020.154671.
  • Lai, J.; Niu, W.; Luque, R.; Xu, G. Solvothermal Synthesis of Metal Nanocrystals and Their Applications. Nano Today. 2015, 10(2), 240–267. DOI: 10.1016/j.nantod.2015.03.001.
  • Broge, N. L. N.; Bertelsen, A. D.; Søndergaard-Pedersen, F.; Iversen, B. B. Facile Solvothermal Synthesis of Pt–Ir–Pd–Rh–Ru–Cu–Ni–Co High-Entropy Alloy Nanoparticles. Chem. Mater. 2023, 35(1), 144–153. DOI: 10.1021/acs.chemmater.2c02842.
  • Jia, Y.; Jiang, Y.; Zhang, J.; Zhang, L.; Chen, Q.; Xie, Z.; Zheng, L. Unique Excavated Rhombic Dodecahedral PtCu 3 Alloy Nanocrystals Constructed with Ultrathin Nanosheets of High-Energy {110} Facets. J. Am. Chem. Soc. 2014, 136(10), 3748–3751. DOI: 10.1021/ja413209q.
  • Cao, Z.; Chen, Q.; Zhang, J.; Li, H.; Jiang, Y.; Shen, S.; Fu, G.; Lu, B.-A.; Xie, Z.; Zheng, L. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8(1), 1–7. DOI: 10.1038/ncomms15131.
  • Sun, S.; Anders, S.; Thomson, T.; Baglin, J.; Toney, M. F.; Hamann, H. F.; Murray, C.; Terris, B. D. Controlled Synthesis and Assembly of FePt Nanoparticles. J. Phys. Chem. B. 2003, 107(23), 5419–5425. DOI: 10.1021/jp027314o.
  • Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 2018, 9(1), 2998. DOI: 10.1038/s41467-018-05462-4.
  • Kaya, S.; Caglar, A.; Kivrak, H. CNT-Supported Multi-Metallic (Ga@ PdAgCo) Anode Catalysts: Synthesis, Characterization, and Glucose Electrooxidation Application. J. Electron. Mater. 2023, 52(2), 887–895. DOI: 10.1007/s11664-022-10079-x.
  • Wang, H.; Yin, S.; Li, Y.; Yu, H.; Li, C.; Deng, K.; Xu, Y.; Li, X.; Xue, H.; Wang, L. One-step Fabrication of tri-metallic PdCuAu Nanothorn Assemblies as an Efficient Catalyst for Oxygen Reduction Reaction. J. Mater. Chem. A. 2018, 6(8), 3642–3648. DOI: 10.1039/C7TA10342E.
  • Li, C.; Wang, H.; Li, Y.; Yu, H.; Yin, S.; Xue, H.; Li, X.; Xu, Y.; Wang, L. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts. Nanotechnol. 2018, 29(25), 255404. DOI: 10.1088/1361-6528/aabb47.
  • Ho, S. F.; Mendoza-Garcia, A.; Guo, S.; He, K.; Su, D.; Liu, S.; Metin, Ö.; Sun, S. A Facile Route to Monodisperse MPd (M= Co or Cu) Alloy Nanoparticles and Their Catalysis for Electrooxidation of Formic Acid. Nanoscale. 2014, 6(12), 6970–6973. DOI: 10.1039/C4NR01107D.
  • Liu, Y.; Wei, M.; Raciti, D.; Wang, Y.; Hu, P.; Park, J. H.; Barclay, M.; Wang, C. Electro-Oxidation of Ethanol Using Pt 3 Sn Alloy Nanoparticles. ACS Catal. 2018, 8(11), 10931–10937. DOI: 10.1021/acscatal.8b03763.
  • Abdinejad, M.; Subramanian, S.; Motlagh, M. K.; Noroozifar, M.; Duangdangchote, S.; Neporozhnii, I.; Ripepi, D.; Pinto, D.; Li, M.; Tang, K. Insertion of MXene-Based Materials into Cu–Pd 3D Aerogels for Electroreduction of CO2 to Formate. Adv. Energy Mater. 2023, 13(19), 2300402. DOI: 10.1002/aenm.202300402.
  • Abdinejad, M.; Motlagh, M. K.; Noroozifar, M.; Kraatz, H. B. Electroreduction of Carbon Dioxide to Formate Using Highly Efficient Bimetallic Sn–Pd Aerogels. Mater. Adv. 2022, 3(2), 1224–1230. DOI: 10.1039/D1MA01057C.
  • Xu, D.; Liu, L.; He, Z.; Yang, J.; Wu, Z.; Jing, Z. Hydrothermal Upgrading of water-insoluble Algal Biocrude over γ-Al2O3 Supported multi-metallic Catalysts. J. Anal. Appl. Pyrolysis. 2019, 140, 188–194. DOI: 10.1016/j.jaap.2019.03.014.
  • Epron, F.; Especel, C.; Lafaye, G.; Marécot, P. Multimetallic Nanoparticles Prepared by Redox Processes Applied in Catalysis, Nanoparticles and Catalysis; Wiley-VCH: Weinheim, 2008.
  • Sun, Q.; Wang, N.; Bing, Q.; Si, R.; Liu, J.; Bai, R.; Zhang, P.; Jia, M.; Yu, J. Subnanometric Hybrid Pd-M (OH) 2, M= Ni, Co, Clusters in Zeolites as Highly Efficient Nanocatalysts for Hydrogen Generation. Chem. 2017, 3(3), 477–493. DOI: 10.1016/j.chempr.2017.07.001.
  • Valero, M. C.; Raybaud, P. Computational Chemistry Approaches for the Preparation of Supported Catalysts: Progress and Challenges. J. Catal. 2020, 391, 539–547. DOI: 10.1016/j.jcat.2020.09.006.
  • Wang, H.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. Multifunctional Electrocatalysts: Ru–M (M= Co, Ni, Fe) for Alkaline Fuel Cells and Electrolyzers. ACS Catal. 2020, 10(8), 4608–4616. DOI: 10.1021/acscatal.9b05621.
  • Wang, H.; Abruña, H. D. IrPdRu/C as H2 Oxidation Catalysts for Alkaline Fuel Cells. J. Am. Chem. Soc. 2017, 139(20), 6807–6810. DOI: 10.1021/jacs.7b02434.
  • Shen, X.; Dai, S.; Pan, Y.; Yao, L.; Yang, J.; Pan, X.; Zeng, J.; Peng, Z. Tuning electronic structure and lattice diffusion barrier of ternary Pt–In–Ni for both improved activity and stability properties in oxygen reduction electrocatalysis. ACS Catal. 2019, 9(12), 11431–11437. DOI: 10.1021/acscatal.9b03430.
  • Wang, L.; Zhang, Y.; Zhang, Y.; Liu, P.; Han, H.; Yang, M.; Jiang, Z.; Li, C. Hydrodesulfurization of 4, 6-DMDBT on a multi-metallic Sulfide Catalyst with Layered Structure. Appl. Catal. A. 2011, 394(1–2), 18–24. DOI: 10.1016/j.apcata.2010.11.043.
  • Chen, Y.; Wang, L.; Liu, X.; Liu, T.; Huang, B.; Li, P.; Jiang, Z.; Li, C. Hydrodesulfurization of 4, 6-DMDBT on multi-metallic bulk catalyst NiAlZnMoW: Effect of Zn. Appl. Catal. A. 2015, 504, 319–327. DOI: 10.1016/j.apcata.2015.01.039.
  • Lv, H.; Fan, C.; Xu, X.; Zhao, C.; Long, J. Rational Design to manganese-doped Amorphous tetra-metallic Oxides as Efficient Catalysts for LiO2 Batteries. Solid State Ionics. 2023, 391, 116146. DOI: 10.1016/j.ssi.2023.116146.
  • Sagar, T. V.; Kumar, P.; Žener, B.; Šuligoj, A.; Kočí, K.; Štangar, U. L. Effective Production of Formic and Acetic Acid via CO2 Hydrogenation with Hydrazine by Using ZrO2 Catalysts. Mol. Catal. 2023, 545, 113238. DOI: 10.1016/j.mcat.2023.113238.
  • Chen, S.; Zhang, J.; Wang, P.; Wang, X.; Song, F.; Bai, Y.; Zhang, M.; Wu, Y.; Xie, H.; Tan, Y. Effect of Vapor-phase-treatment to CuZnZr Catalyst on the Reaction Behaviors in CO2 Hydrogenation into Methanol. ChemCatChem. 2019, 11(5), 1448–1457. DOI: 10.1002/cctc.201801988.
  • Zhou, Y.; Zhang, W.; Hu, J.; Li, D.; Yin, X.; Gao, Q. Inherent Oxygen Vacancies Boost Surface Reconstruction of Ultrathin Ni-Fe layered-double-hydroxides toward Efficient Electrocatalytic Oxygen Evolution. ACS Sustain. Chem. Eng. 2021, 9(21), 7390–7399. DOI: 10.1021/acssuschemeng.1c02256.
  • Razmara, Z.; Razmara, F. Synthesis and Magnetic Properties of Fe-Ni-Zn, Fe-Co-Zn and Co-Ni-Zn Nanoparticles by co-precipitation Method, Inorg. Nano-Met. Chem. 2019, 49, 163–168.
  • Chu, C.; Chang, L.; Yin, D.; Zhang, D.; Cheng, Y.; Wang, L. Large-Sized Nickel–Cobalt–Manganese Composite Oxide Agglomerate Anode Material for Long-Life-Span Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4(12), 13811–13818. DOI: 10.1021/acsaem.1c02565.
  • Wang, Z.; Lin, J.; Xu, H.; Zheng, Y.; Xiao, Y.; Zheng, Y. Zr-doped NiO Nanoparticles for low-temperature Methane Combustion. ACS Applied Nano Materials. 2021, 4(11), 11920–11930. DOI: 10.1021/acsanm.1c02487.
  • Cargnello, M.; Agarwal, R.; Klein, D. R.; Diroll, B. T.; Agarwal, R.; Murray, C. B. Uniform Bimetallic Nanocrystals by high-temperature seed-mediated Colloidal Synthesis and Their Catalytic Properties for Semiconducting Nanowire Growth. Chem. Mater. 2015, 27(16), 5833–5838. DOI: 10.1021/acs.chemmater.5b02900.
  • Ahmed, H. B.; Emam, H. E. Seeded Growth core-shell (Ag–Au–Pd) Ternary Nanostructure at Room Temperature for Potential Water Treatment. Polym. Test. 2020, 89, 106720. DOI: 10.1016/j.polymertesting.2020.106720.
  • Bian, T.; Sun, B.; Luo, S.; Huang, L.; Su, S.; Meng, C.; Su, S.; Yuan, A.; Zhang, H. Seed-mediated Synthesis of Au@PtCu Nanostars with Rich Twin Defects as Efficient and Stable Electrocatalysts for Methanol Oxidation Reaction. RSC Adv. 2019, 9(61), 35887–35894. DOI: 10.1039/C9RA06893G.
  • Xiao, X.; Jung, E.; Yu, S.; Kim, H.; Kim, H.; Lee, K.; Ahn, J.; Lim, T.; Kim, J.; Yu, T. Facile Aqueous–Phase Synthesis of Pd–FePt Core–Shell Nanoparticles for Methanol Oxidation Reaction Note: MDPI stays neu-tral with regard to jurisdictional clai-ms in …, 2021. Catalysts. 2021, 11(1), 130. DOI: 10.3390/catal11010130.
  • Gong, Z.; Ma, T.; Liang, F. Syntheses of Magnetic blackberry-like Ni@Cu@Pd Nanoparticles for Efficient Catalytic Reduction of Organic Pollutants. J. Alloys Compd. 2021, 873, 159802. DOI: 10.1016/j.jallcom.2021.159802.
  • Tang, Z.; Yeo, B. C.; Han, S. S.; Lee, T.-J.; Bhang, S. H.; Kim, W.-S.; Yu, T. Facile aqueous-phase Synthesis of Ag–Cu–Pt–Pd Quadrometallic Nanoparticles. Nano Convergence. 2019, 6(1), 1–7. DOI: 10.1186/s40580-019-0208-z.
  • Tang, Z.; Jung, E.; Jang, Y.; Bhang, S. H.; Kim, J.; Kim, W.-S.; Yu, T. Facile aqueous-phase Synthesis of Bimetallic (Agpt, AgPd, and CuPt) and Trimetallic (Agcupt) Nanoparticles. Materials. 2020, 13(2), 254. DOI: 10.3390/ma13020254.
  • Xi, Z.; Li, J.; Su, D.; Muzzio, M.; Yu, C.; Li, Q.; Sun, S. Stabilizing CuPd Nanoparticles via CuPd Coupling to Wo 2.72 Nanorods in Electrochemical Oxidation of Formic Acid. J. Am. Chem. Soc. 2017, 139(42), 15191–15196. DOI: 10.1021/jacs.7b08643.
  • Shore, M. S.; Wang, J.; Johnston‐Peck, A. C.; Oldenburg, A. L.; Tracy, J. B. Synthesis of Au(Core)/Ag(Shell) Nanoparticles and Their Conversion to AuAg Alloy Nanoparticles. Small. 2011, 7(2), 230–234. DOI: 10.1002/smll.201001138.
  • Wang, C.; Peng, S.; Chan, R.; Sun, S. Synthesis of AuAg Alloy Nanoparticles from Core/Shell‐Structured Ag/Au. Small. 2009, 5, 567–570.
  • Kokoh, K.; Mayousse, E.; Napporn, T.; Servat, K.; Guillet, N.; Soyez, E.; Grosjean, A.; Rakotondrainibé, A.; Paul-Joseph, J. Efficient multi-metallic anode catalysts in a PEM water electrolyzer. Int. J. Hydrogen Energy. 2014, 39(5), 1924–1931. DOI: 10.1016/j.ijhydene.2013.11.076.
  • Cui, M.; Xu, B.; Wang, L. Recent Advances in Multi‐metallic‐based Nanozymes for Enhanced Catalytic Cancer Therapy. BMEMat. 2024, 2, e12043.
  • Gao, S.; Chen, H.; Liu, Y.; Li, G.-D.; Gao, R.; Zou, X. Surface-clean, phase-pure multi-metallic Carbides for Efficient Electrocatalytic Hydrogen Evolution Reaction. Inorg. Chem. Front. 2019, 6(4), 940–947. DOI: 10.1039/C8QI01360H.
  • Kwon, S. G.; Hyeon, T. Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods. Small. 2011, 7(19), 2685–2702. DOI: 10.1002/smll.201002022.
  • Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. science. 2000, 287(5460), 1989–1992. DOI: 10.1126/science.287.5460.1989.
  • Sun, S.;. Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles. Adv. Mater. 2006, 18(4), 393–403. DOI: 10.1002/adma.200501464.
  • Chen, M.; Liu, J.; Sun, S. One-step Synthesis of FePt Nanoparticles with Tunable Size. J. Am. Chem. Soc. 2004, 126(27), 8394–8395. DOI: 10.1021/ja047648m.
  • Shih, K.-Y.; Wei, -J.-J.; Tsai, M.-C. One-Step Microwave-Assisted Synthesis of PtNiCo/rGO Electrocatalysts with High Electrochemical Performance for Direct Methanol Fuel Cells. Nanomater. 2021, 11(9), 2206. DOI: 10.3390/nano11092206.
  • Wang, B.; Chen, Y.; Wang, X.; Zhang, X.; Hu, Y.; Yu, B.; Yang, D.; Zhang, W. A microwave-assisted Bubble Bursting Strategy to Grow Co8FeS8/CoS Heterostructure on Rearranged Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Evolution Reaction. J. Power Sources. 2020, 449, 227561. DOI: 10.1016/j.jpowsour.2019.227561.
  • Yadav, N.; Yadav, R. R.; Dey, K. K. Microwave Assisted Formation of Trimetallic AuPtCu Nanoparticles from Bimetallic nano-islands: Why It Is a Superior New Age Biocidal Agent Compared to Monometallic & Bimetallic Nanoparticles. J. Alloys Compd. 2022, 896, 163073. DOI: 10.1016/j.jallcom.2021.163073.
  • Rethinasabapathy, M.; Kang, S.-M.; Haldorai, Y.; Jankiraman, M.; Jonna, N.; Choe, S. R.; Huh, Y. S.; Natesan, B. Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy. 2017, 42(52), 30738–30749. DOI: 10.1016/j.ijhydene.2017.10.121.
  • Köhler, D.; Heise, M.; Baranov, A. I.; Luo, Y.; Geiger, D.; Ruck, M.; Armbrüster, M. Synthesis of BiRh Nanoplates with Superior Catalytic Performance in the Semihydrogenation of Acetylene. Chem. Mater. 2012, 24, 1639–1644.
  • Li, -H.-H.; Ma, S.-Y.; Fu, -Q.-Q.; Liu, X.-J.; Wu, L.; Yu, S.-H. Scalable Bromide-Triggered Synthesis of Pd@Pt Core–Shell Ultrathin Nanowires with Enhanced Electrocatalytic Performance toward Oxygen Reduction Reaction. J. Am. Chem. Soc. 2015, 137(24), 7862–7868. DOI: 10.1021/jacs.5b03877.
  • Ahn, J.; Qin, D. Fabrication of Nanoscale Cage Cubes by Drilling Orthogonal, Intersected Holes through All Six Side Faces of Ag Nanocubes. Chem. Mater. 2019, 31(21), 9179–9187. DOI: 10.1021/acs.chemmater.9b03774.
  • Zhu, W.; Wang, X.-B.; Li, C.; Chen, X.; Li, W.-Y.; Liu, Z.; Liang, C. Defect Engineering over Co3O4 Catalyst for Surface Lattice Oxygen Activation and Boosted Propane Total Oxidation. J. Catal. 2022, 413, 150–162.
  • Naresh, N.; Karthik, P.; Vinoth, R.; Muthamizhchelvan, C.; Neppolian, B. Tailoring multi-metallic Nanotubes by Copper Nanowires with Platinum and Gold via Galvanic Replacement Route for the Efficient Methanol Oxidation Reaction. Electrochim. Acta. 2018, 282, 792–798. DOI: 10.1016/j.electacta.2018.06.094.
  • Crockett, J. R.; Wang, M.; Doebler, J. E.; Pawale, T.; Li, X.; Bao, Y. Impact on the Formation and Catalytic Property of Pt-Based Nanocatalysts by Galvanic Reaction with Co-Reduction Agents. Chem. Mater. 2022, 34(20), 9282–9293. DOI: 10.1021/acs.chemmater.2c02659.
  • Shahrokhian, S.; Rezaee, S. Fabrication of Trimetallic Pt−Pd−Co Porous Nanostructures on Reduced Graphene Oxide by Galvanic Replacement: Application to Electrocatalytic Oxidation of Ethylene Glycol. Electroanalysis. 2017, 29(11), 2591–2601. DOI: 10.1002/elan.201700355.
  • Zhou, M.; Li, C.; Fang, J. Noble-metal Based Random Alloy and Intermetallic Nanocrystals. Syntheses and Applications, Chem. Rev. 2020, 121, 736–795.
  • Gebre, S. H.; Sendeku, M. G. Trimetallic Nanostructures and Their Applications in Electrocatalytic Energy Conversions. J. Energy Chem. 2022, 65, 329–351. DOI: 10.1016/j.jechem.2021.06.006.
  • Kuang, W.-T.; Jiang, Z.-L.; Li, H.; Zhang, J.-X.; Zhou, L.-N.; Li, Y.-J. Self-Supported Composition-Tunable Au/PtPd Core/Shell Tri-Metallic Nanowires for Boosting Alcohol Electrooxidation and Suzuki Coupling. ChemElectroChem. 2018, 5(24), 3901–3905. DOI: 10.1002/celc.201801255.
  • Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43(8), 2439–2450. DOI: 10.1039/c3cs60351b.
  • Kaur, R.; Mehta, S. Self Aggregating Metal Surfactant Complexes: Precursors for Nanostructures. Coord. Chem. Rev. 2014, 262, 37–54. DOI: 10.1016/j.ccr.2013.12.014.
  • Gebre, S. H. Synthesis and Potential Applications of Trimetallic Nanostructures. New J. Chem. 2022, 46(12), 5438–5459. DOI: 10.1039/D1NJ06074K.
  • Cheney, B. Reverse Micelle Synthesis and Characterization of Supported Bimetallic Catalysts; University of Delaware, 2010. https://api.semanticscholar.org/CorpusID:97688776.
  • Zhang, X.; Tsang, K.-Y.; Chan, K.-Y. Electrocatalytic Properties of Supported platinum–cobalt Nanoparticles with Uniform and Controlled Composition. J. Electroanal. Chem. 2004, 573, 1–9.
  • Cheney, B. A.; Lauterbach, J. A.; Chen, J. G. Reverse Micelle Synthesis and Characterization of Supported Pt/Ni Bimetallic Catalysts on γ-Al2O3, Appl. Appl. Catal., A. 2011, 394(1–2), 41–47. DOI: 10.1016/j.apcata.2010.12.021.
  • Abazari, R.; Heshmatpour, F.; Balalaie, S. Pt/Pd/Fe Trimetallic Nanoparticle Produced via Reverse Micelle Technique: Synthesis, Characterization, and Its Use as an Efficient Catalyst for Reductive Hydrodehalogenation of Aryl and Aliphatic Halides under Mild Conditions. ACS Catal. 2013, 3(2), 139–149. DOI: 10.1021/cs300507a.
  • Melo-Banda, J.; Lam-Maldonado, M.; Rodríguez-Gómez, F.; Hérnandez-Vega, L.; Malpica-Maldonado, J.; de la Torre, A. I. R. Ni:Fe:Mo and Ni:Co:Mo Nanocatalysts to Hydroprocessing to Heavy Crude Oil: Effect of Continue Phase in the Final Metallic Nanoparticles Size. ACS Catal. 2022, 392-393, 72–80. DOI: 10.1016/j.cattod.2021.09.018.
  • Zhang, H.; Kawashima, K.; Okumura, M.; Toshima, N. Colloidal Au single-atom Catalysts Embedded on Pd Nanoclusters. J. Mater. Chem. A. 2014, 2(33), 13498–13508. DOI: 10.1039/C4TA01696C.
  • An, K.; Somorjai, G. A. Size and Shape Control of Metal Nanoparticles for Reaction Selectivity in Catalysis. ChemCatChem. 2012, 4(10), 1512–1524. DOI: 10.1002/cctc.201200229.
  • Li, C.; Pan, J.; Zhang, L.; Fang, J. Colloidal Synthesis of Monodisperse Trimetallic Pt–Fe–Ni Nanocrystals and Their Enhanced Electrochemical Performances. Nanotechnol. 2023, 34(7), 075401. DOI: 10.1088/1361-6528/aca337.
  • Wong, W. K.; Chin, J. T. Y.; Khan, S. A.; Pelletier, F.; Corbos, E. C. Robust Continuous Synthesis and in Situ Deposition of Catalytically Active Nanoparticles on Colloidal Support Materials in a Triphasic Flow Millireactor. Chem. Eng. J. 2022, 430, 132778. DOI: 10.1016/j.cej.2021.132778.
  • Crawley, J. W. M.; Gow, I. E.; Lawes, N.; Kowalec, I.; Kabalan, L.; Catlow, C. R. A.; Logsdail, A. J.; Taylor, S. H.; Dummer, N. F.; Hutchings, G. J. Heterogeneous Trimetallic Nanoparticles as Catalysts. Chem. Rev. 2022, 122(6), 6795–6849. DOI: 10.1021/acs.chemrev.1c00493.
  • Konuspayeva, Z.; Berhault, G.; Afanasiev, P.; Nguyen, T.-S.; Giorgio, S.; Piccolo, L. Monitoring in situ the colloidal synthesis of AuRh/TiO2 selective-hydrogenation nanocatalysts. J. Mater. Chem. A. 2017, 5(33), 17360–17367. DOI: 10.1039/C7TA03965D.
  • Atarod, M.; Safari, J.; Tavakolizadeh, M.; Pourjavadi, A. A facile green synthesis of MgCoFe2O4 nanomaterials with robust catalytic performance in the synthesis of pyrano[2,3-d]pyrimidinedione and their bis-derivatives. Mol. Diversity. 2021, 25(4), 2183–2200. DOI: 10.1007/s11030-020-10111-4.
  • Einert, M.; Waheed, A.; Lauterbach, S.; Mellin, M.; Rohnke, M.; Wagner, L. Q.; Gallenberger, J.; Tian, C.; Smarsly, B. M.; Jaegermann, W., et al. Sol-Gel-Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance. Small. 2023, 19(14), 2205412. DOI: 10.1002/smll.202205412.
  • Ramezani, Y.; Meshkani, F.; Rezaei, M. Promotional effect of Mg in trimetallic nickel-manganese-magnesium nanocrystalline catalysts in CO2 reforming of methane. Int. J. Hydrogen Energy. 2018, 43(49), 22347–22356. DOI: 10.1016/j.ijhydene.2018.09.222.
  • D’Arienzo, M.; Scotti, R.; Di Credico, B.; Redaelli, M. Synthesis and Characterization of morphology-controlled TiO2 Nanocrystals: Opportunities and Challenges for Their Application in Photocatalytic Materials, Stud. Surf. Sci. Catal. 2017, 177, 477–540.
  • Casillas, J.; Tzompantzi, F.; Castellanos, S.; Mendoza-Damián, G.; Pérez-Hernández, R.; López-Gaona, A.; Barrera, A. Promotion Effect of ZnO on the Photocatalytic Activity of Coupled Al2O3-Nd2O3-ZnO Composites Prepared by the Sol− Gel Method in the Degradation of Phenol. Appl. Catal. B. 2017, 208, 161–170.
  • Qi, S.; Yu, W.; Lonergan, W. W.; Yang, B.; Chen, J. G. General Trends in the Partial and Complete Hydrogenation of 1, 4‐Cyclohexadiene over Pt–Co. Pt–Ni and Pt–Cu Bimetallic Catalysts, ChemCatChem. 2010, 2, 625–628.
  • Wang, T.; Mpourmpakis, G.; Lonergan, W. W.; Vlachos, D. G.; Chen, J. G. Effect of Oxide Supports in Stabilizing Desirable Pt–Ni Bimetallic Structures for Hydrogenation and Reforming Reactions. Phys. Chem. Chem. Phys. 2013, 15, 12156–12164.
  • Wang, T.; Porosoff, M. D.; Chen, J. G. Effects of Oxide Supports on the water-gas Shift Reaction over PtNi Bimetallic Catalysts: Activity and Methanation Inhibition, Catal. Today. 2014, 233, 61–69.
  • Ferreira, S. L. C.; Bezerra, M. A.; Santos, A. S.; Dos Santos, W. N. L.; Novaes, C. G.; de Oliveira, O. M. C.; Oliveira, M. L.; Garcia, R. L. Atomic Absorption Spectrometry – A Multi Element Technique. TrAC Trends Anal. Chem. 2018, 100, 1–6.
  • Zhang, M.; Song, H.; Shang, J.; Liu, X.; Qi, S.; Li, H. Spectroscopic methods for isotope analysis of heavy metal atoms: A review, Spectrochimica Acta Part B. At. Spectrosc. 2023, 207, 106740.
  • Planeta, K.; Kubala-Kukus, A.; Drozdz, A.; Matusiak, K.; Setkowicz, Z.; Chwiej, J. The Assessment of the Usability of Selected Instrumental Techniques for the Elemental Analysis of Biomedical Samples. Sci. Rep. 2021, 11, 3704.
  • Bisht, N. S.; Pancholi, D.; Sahoo, N. G.; Melkani, A. B.; Mehta, S. P. S.; Dandapat, A. Effect of Ag–Fe–Cu tri-metal Loading in Bismuth Oxybromide to Develop a Novel Nanocomposite for the Sunlight Driven Photocatalytic Oxidation of Alcohols. Catal. Sci. Technol. 2019, 9, 3923–3932.
  • Chen, C.; Tuo, Y.; Lu, Q.; Lu, H.; Zhang, S.; Zhou, Y.; Zhang, J.; Liu, Z.; Kang, Z.; Feng, X., et al. Hierarchical Trimetallic Co-Ni-Fe Oxides Derived from core-shell Structured metal-organic Frameworks for Highly Efficient Oxygen Evolution Reaction. Appl. Catal. B Environ. 2021, 287, 119953.
  • Linge, K. L. Recent Developments in Trace Element Analysis by ICP-AES and ICP-MS with Particular Reference to Geological and Environmental Samples. Geostandards and Geoanalytical Research. 2005, 29, 7–22.
  • Jia, X.; Jiang, J.; Zou, S.; Han, L.; Zhu, H.; Zhang, Q.; Ma, Y.; Luo, P.; Wu, P.; Mayoral, A., et al. Library Creation of Ultrasmall Multi-metallic Nanoparticles Confined in Mesoporous MFI Zeolites. Angew. Chem. Int. Ed. 2021, 60, 14571–14577.
  • Balaram, V.;. Recent Advances in the Determination of Elemental Impurities in pharmaceuticals–Status, Challenges and Moving Frontiers, TrAC, Trends Anal. Chem. 2016, 80, 83–95.
  • Ding, H.; Wang, P.; Su, C.; Liu, H.; Tai, X.; Zhang, N.; Lv, H.; Lin, Y.; Chu, W.; Wu, X. Epitaxial Growth of Ultrathin Highly Crystalline Pt–Ni Nanostructure on a Metal Carbide Template for Efficient Oxygen Reduction Reaction. Adv. Mater. 2022, 34, 2109188.
  • Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L. Homogeneously Dispersed Multimetal oxygen-evolving Catalysts. science. 2016, 352, 333–337.
  • Gervasini, A.;. Temperature Programmed Reduction/Oxidation (TPR/TPO) Methods. Calorimetry and Thermal Methods in Catalysis, Springer. 2013, 154, 175–195.
  • Besselmann, S.; Freitag, C.; Hinrichsen, O.; Muhler, M. Temperature-programmed Reduction and Oxidation Experiments with V2O5/TiO2 Catalysts. Phys. Chem. Chem. Phys. 2001, 3, 4633–4638.
  • Theofanidis, S. A.; Galvita, V. V.; Sabbe, M.; Poelman, H.; Detavernier, C.; Marin, G. B. Controlling the Stability of a Fe–Ni Reforming Catalyst: Structural Organization of the Active Components. Appl. Catal. B. 2017, 209, 405–416.
  • Friberg, I.; Sadokhina, N.; Olsson, L. Complete Methane Oxidation over Ba Modified Pd/Al2O3: The Effect of Water Vapor, Appl. Catal. B. 2018, 231, 242–250.
  • Ishii, T.; Kyotani, T. Temperature Programmed Desorption. Mater. Sci. Eng. 2016, 287–305.
  • Cai, C.; Liu, K.; Zhu, Y.; Li, P.; Wang, Q.; Liu, B.; Chen, S.; Li, H.; Zhu, L.; Li, H. Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angew. Chem. Int. Ed. 2022, 134, e202113664.
  • Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J.; González-Velasco, J. Mechanism of the CO2 Storage and in Situ Hydrogenation to CH4. Temperature and Adsorbent Loading Effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 Catalysts. Appl. Catal. B. 2019, 256, 117845.
  • Vladár, A. E.; Hodoroaba, V.-D. Chapter 2.1.1 - Characterization of Nanoparticles by Scanning Electron Microscopy. In Characterization of Nanoparticles, Elsevier; Hodoroaba, V.-D., Unger, W. E. S., Shard, A. G.; Eds.; Micro and Nano Technologies, 2020; 7–27.
  • Li, G.; Zhang, H.; Han, Y. Applications of Transmission Electron Microscopy in Phase Engineering of Nanomaterials. Chem. Rev. 2023, 123, 10728–10749.
  • Ponce, A.; Aguilar, J. A.; Tate, J.; Yacamán, M. J. Advances in the Electron Diffraction Characterization of Atomic Clusters and Nanoparticles. Nanoscale Adv. 2021, 3, 311–325.
  • Jagadeesh, P.; Rangappa, S. M.; Siengchin, S. Advanced Characterization Techniques for Nanostructured Materials in Biomedical Applications. Adv. Ind. Eng. Polym. Res. 2024, 7(1), 122–143.
  • Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S. Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges. Ultramicroscopy. 2021, 221, 113191.
  • Liu, S.; Yin, S.; Zhang, H.; Jiao, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Trimetallic Au@ PdPt Porous core-shell Structured Nanowires for Oxygen Reduction Electrocatalysis. Chem. Eng. J. 2022, 428, 131070.
  • Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale. 2018, 10, 12871–12934.
  • Modena, M. M.; Rühle, B.; Burg, T. P.; Wuttke, S. Nanoparticle Characterization: What to Measure? Adv. Mater. 2019, 31, 1901556.
  • Shah, K.; Dai, R.; Mateen, M.; Hassan, Z.; Zhuang, Z.; Liu, C.; Israr, M.; Cheong, W. C.; Hu, B.; Tu, R. Cobalt single atom incorporated in ruthenium oxide sphere: a robust bifunctional electrocatalyst for HER and OER. Angew. Chem. Int. Ed. 2022, 134, e202114951.
  • Wang, H.; Ren, H.; Liu, S.; Yin, S.; Jiao, S.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Three-dimensional PdAuRu Nanospines Assemblies for Oxygen Reduction Electrocatalysis. Chem. Eng. J. 2022, 438, 135539.
  • Wu, R.; Tsiakaras, P.; Shen, P. K. Facile Synthesis of Bimetallic Pt-Pd symmetry-broken Concave Nanocubes and Their Enhanced Activity toward Oxygen Reduction Reaction. Appl. Catal. B. 2019, 251, 49–56.
  • Chen, W.; Luo, S.; Sun, M.; Tang, M.; Fan, X.; Cheng, Y.; Wu, X.; Liao, Y.; Huang, B.; Quan, Z. Hexagonal PtBi Intermetallic Inlaid with Sub‐Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. Small. 2022, 18, 2107803.
  • Wang, X.; Xiao, H.; Li, A.; Li, Z.; Liu, S.; Zhang, Q.; Gong, Y.; Zheng, L.; Zhu, Y.; Chen, C. Constructing NiCo/Fe3O4 Heteroparticles within MOF-74 for Efficient Oxygen Evolution Reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.
  • Deng, Y.; Xiao, Z.; Wang, Z.; Lai, J.; Liu, X.; Zhang, D.; Han, Y.; Li, S.; Sun, W.; Wang, L. The Rational Adjusting of proton-feeding by Pt-doped FeP/C Hollow Nanorod for Promoting Nitrogen Reduction Kinetics. Appl. Catal. B. 2021, 291, 120047.
  • Zaera, F.;. New Advances in the Use of Infrared Absorption Spectroscopy for the Characterization of Heterogeneous Catalytic Reactions. Chem. Soc. Rev. 2014, 43, 7624–7663.
  • Venezia, A. M.;. X-ray Photoelectron Spectroscopy (XPS) for Catalysts Characterization, Catal. Today. 2003, 77, 359–370.
  • Chen, H.-Y.; Niu, H.-J.; Han, Z.; Feng, -J.-J.; Huang, H.; Wang, A.-J. Simple Fabrication of Trimetallic platinum-nickel-cobalt Hollow Alloyed 3D Multipods for Highly Boosted Hydrogen Evolution Reaction. J. Colloid Sci. 2020, 570, 205–211.
  • Jia, Y.; Huang, T.-H.; Lin, S.; Guo, L.; Yu, Y.-M.; Wang, J.-H.; Wang, K.-W.; Dai, S. Stable Pd–Cu Hydride Catalyst for Efficient Hydrogen Evolution. Nano Lett. 2022, 22, 1391–1397.
  • Koningsberger, D. C. Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. X-ray Absorption. 1988. https://cir.nii.ac.jp/crid/1571135649230758400.
  • Niemantsverdriet, J. W. Spectroscopy in Catalysis: An Introduction; Wiley‐VCH Verlag GmbH & Co. KGaA: John Wiley & Sons, 2007.
  • Aksenov, V.; Kuzmin, A. Y.; Purans, J.; Tyutyunnikov, S. EXAFS spectroscopy at synchrotron-radiation beams. Phys. Part. Nucl. 2001, 32, 675–707.
  • Aksenov, V.; Koval’chuk, M.; Kuz’min, A. Y.; Purans, Y.; Tyutyunnikov, S. Development of Methods of EXAFS Spectroscopy on Synchrotron Radiation Beams, Crystallogr. Rep. 2006, 51, 908–935.
  • Iwasawa, Y. X-ray Absorption Fine Structure for Catalysts and Surfaces, World Scientific. 1996.
  • Zheng, Y.; Wang, X.; Kong, Y.; Ma, Y. Two-dimensional Multimetallic Alloy Nanocrystals: Recent Progress and Challenges. CrystEngComm. 2021, 23, 6454–6469.
  • Lu, G.-H.; Zong, M.-H.; Li, N. Combining Electro-, Photo-, and Biocatalysis for one-pot Selective Conversion of Furfural into value-added C4 Chemicals. ACS Catal. 2023, 13, 1371–1380.
  • Humayun, M.; Israr, M.; Khan, A.; Bououdina, M. State-of-the-art single-atom Catalysts in Electrocatalysis: From Fundamentals to Applications. Nano Energy. 2023, 113, 108570.
  • Humayun, M.; Bououdina, M.; Khan, A.; Ali, S.; Wang, C. Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chin. J. Struct. Chem. 2024, 43, 100193.
  • Abdinejad, M.; Dao, C.; Deng, B.; Dinic, F.; Voznyy, O.; Zhang, X.-A.; Kraatz, H.-B. Electrocatalytic Reduction of CO2 to CH4 and CO in Aqueous Solution Using Pyridine-Porphyrins Immobilized onto Carbon Nanotubes. ACS Sustainable Chem. Eng. 2020, 8, 9549–9557.
  • Abdinejad, M.; Dao, C.; Deng, B.; Sweeney, M. E.; Dielmann, F.; Zhang, X.-A.; Kraatz, H. B. Enhanced Electrochemical Reduction of CO2 to CO upon Immobilization onto Carbon Nanotubes Using an Iron-Porphyrin Dimer. ChemistrySelect. 2020, 5, 979–984.
  • Abdinejad, M.; Yuan, T.; Tang, K.; Duangdangchote, S.; Farzi, A.; Iglesias van Montfort, H.-P.; Li, M.; Middelkoop, J.; Wolff, M.; Seifitokaldani, A., et al. Electroreduction of Carbon Dioxide to Acetate using Heterogenized Hydrophilic Manganese Porphyrins, Chemistry. Chem. Eur. J. Chemistry. 2023, 29(14), e202203977.
  • Zang, W.; Kou, Z.; Pennycook, S. J.; Wang, J. Heterogeneous Single Atom Electrocatalysis, Where “Singles” are “Married. Adv. Energy Mater. 2020, 10, 1903181.
  • Zhu, S.; Qin, X.; Wang, Q.; Li, T.; Tao, R.; Gu, M.; Shao, M. Composition-dependent CO2 Electrochemical Reduction Activity and Selectivity on Au–Pd core–shell Nanoparticles. J. Mater. Chem. A. 2019, 7, 16954–16961.
  • Abdinejad, M.; Ferrag, C.; Hossain, M. N.; Noroozifar, M.; Kerman, K.; Kraatz, H. B. Capture and Electroreduction of CO2 Using Highly Efficient Bimetallic Pd–Ag Aerogels Paired with Carbon Nanotubes. J. Mater. Chem. A. 2021, 9, 12870–12877.
  • Cheng, H.; Wu, X.; Feng, M.; Li, X.; Lei, G.; Fan, Z.; Pan, D.; Cui, F.; He, G. Atomically Dispersed Ni/Cu Dual Sites for Boosting the CO2 Reduction Reaction. ACS Catal. 2021, 11, 12673–12681.
  • Yang, Z.; Wang, H.; Fei, X.; Wang, W.; Zhao, Y.; Wang, X.; Tan, X.; Zhao, Q.; Wang, H.; Zhu, J. MOF Derived Bimetallic CuBi Catalysts with ultra-wide Potential Window for high-efficient Electrochemical Reduction of CO2 to Formate. Appl. Catal. B. 2021, 298, 120571.
  • Pei, J.; Wang, T.; Sui, R.; Zhang, X.; Zhou, D.; Qin, F.; Zhao, X.; Liu, Q.; Yan, W.; Dong, J. N-Bridged CO–N–Ni: New Bimetallic Sites for Promoting Electrochemical CO2 Reduction. Energy Environ. Sci. 2021, 14, 3019–3028.
  • Chen, M.; Wan, S.; Zhong, L.; Liu, D.; Yang, H.; Li, C.; Huang, Z.; Liu, C.; Chen, J.; Pan, H. Dynamic Restructuring of Cu‐Doped SnS2 Nanoflowers for Highly Selective Electrochemical CO2 Reduction to Formate. Angew. Chem. Int. Ed. 2021, 60, 26233–26237.
  • Helal, A.; Shah, S. S.; Usman, M.; Khan, M. Y.; Aziz, M. A.; Rahman, M. M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. Chem. Rec. 2022, 22(7), e202200055.
  • Xiong, L.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X.; Lian, Y.; Jin, H.; Sun, H.; Deng, Z.; Wang, D. Breaking the Linear Scaling Relationship by Compositional and Structural Crafting of Ternary Cu–Au/Ag Nanoframes for Electrocatalytic Ethylene Production. Angew. Chem. Int. Ed. 2021, 133, 2538–2548.
  • Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.; Zong, H. Ensemble Effect in Bimetallic Electrocatalysts for CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 16635–16642.
  • Yang, Q.; Wu, Q.; Liu, Y.; Luo, S.; Wu, X.; Zhao, X.; Zou, H.; Long, B.; Chen, W.; Liao, Y. Novel Bi‐Doped Amorphous SnOx Nanoshells for Efficient Electrochemical CO2 Reduction into Formate at Low Overpotentials. Adv. Mater. 2020, 32, 2002822.
  • Lamaison, S.; Wakerley, D.; Blanchard, J.; Montero, D.; Rousse, G.; Mercier, D.; Marcus, P.; Taverna, D.; Giaume, D.; Mougel, V. High-current-density CO2-to-CO Electroreduction on Ag-alloyed Zn Dendrites at Elevated Pressure. Joule. 2020, 4, 395–406.
  • Chen, Y.; Fan, Z.; Wang, J.; Ling, C.; Niu, W.; Huang, Z.; Liu, G.; Chen, B.; Lai, Z.; Liu, X. Ethylene Selectivity in Electrocatalytic CO2 Reduction on Cu Nanomaterials: A Crystal phase-dependent Study. J. Am. Chem. Soc. 2020, 142, 12760–12766.
  • Dai, L.; Qin, Q.; Wang, P.; Zhao, X.; Hu, C.; Liu, P.; Qin, R.; Chen, M.; Ou, D.; Xu, C. Ultrastable Atomic Copper Nanosheets for Selective Electrochemical Reduction of Carbon Dioxide. Sci. Adv. 2017, 3, e1701069.
  • Ren, W.; Tan, X.; Yang, W.; Jia, C.; Xu, S.; Wang, K.; Smith, S. C.; Zhao, C. Isolated diatomic Ni‐Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 2019, 58, 6972–6976.
  • Ren, D.; Ang, B. S.-H.; Yeo, B. S. Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on oxide-derived Cu X Zn Catalysts. ACS Catal. 2016, 6, 8239–8247.
  • Herzog, A.; Bergmann, A.; Jeon, H. S.; Timoshenko, J.; Kühl, S.; Rettenmaier, C.; Luna, M. L.; Haase, F. T.; Cuenya, B. R. Operando Investigation of Ag‐Decorated Cu2O Nanocube Catalysts with Enhanced CO2 Electroreduction toward Liquid Products. Angew. Chem. Int. Ed. 2021, 60, 7426–7435.
  • Xing, Y.; Kong, X.; Guo, X.; Liu, Y.; Li, Q.; Zhang, Y.; Sheng, Y.; Yang, X.; Geng, Z.; Zeng, J. Bi@ Sn core–shell Structure with Compressive Strain Boosts the Electroreduction of CO2 into Formic Acid. Adv. Sci. 2020, 7, 1902989.
  • Zhang, W.; Qin, Q.; Dai, L.; Qin, R.; Zhao, X.; Chen, X.; Ou, D.; Chen, J.; Chuong, T. T.; Wu, B., Electrochemical Reduction of Carbon Dioxide to Methanol on Hierarchical Pd/SnO2 Nanosheets with Abundant Pd–O–Sn Interfaces, Angew. Chem. Int. Ed., 57 (2018) 9475–9479
  • Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single-atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule. 2018, 2, 1242–1264.
  • Zhou, A.; Guo, W.-J.; Wang, Y.-Q.; Zhang, J.-T. The Rapid Preparation of Efficient MoFeCo-Based Bifunctional Electrocatalysts via Joule Heating for Overall Water Splitting. J. Electrochem. 2022, 28, 4.
  • Sun, H.; Li, L.; Humayun, M.; Zhang, H.; Bo, Y.; Ao, X.; Xu, X.; Chen, K.; Ostrikov, K. K.; Huo, K. Achieving Highly Efficient pH-universal Hydrogen Evolution by Superhydrophilic amorphous/crystalline Rh (OH) 3/NiTe Coaxial Nanorod Array Electrode. Appl. Catal. B Environ. 2022, 305, 121088.
  • Qin, M.; Chen, L.; Zhang, H.; Humayun, M.; Fu, Y.; Xu, X.; Xue, X.; Wang, C. Achieving Highly Efficient pH-universal Hydrogen Evolution by Mott-Schottky Heterojunction of CO2P/Co4N. Chem. Eng. J. 2023, 454, 140230.
  • Xu, X.; Ullah, H.; Humayun, M.; Li, L.; Zhang, X.; Bououdina, M.; Debecker, D. P.; Huo, K.; Wang, D.; Wang, C. Fluorinated Ni‐O‐C Heterogeneous Catalyst for Efficient Urea‐Assisted Hydrogen Production. Adv. Funct. Mater. 2023, 33, 2303986.
  • Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived Electrocatalysts for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.
  • Liu, G.; Zhou, W.; Chen, B.; Zhang, Q.; Cui, X.; Li, B.; Lai, Z.; Chen, Y.; Zhang, Z.; Gu, L. Synthesis of RuNi Alloy Nanostructures Composed of Multilayered Nanosheets for Highly Efficient Electrocatalytic Hydrogen Evolution. Nano Energy. 2019, 66, 104173.
  • Lu, J.; Tang, Z.; Luo, L.; Yin, S.; Shen, P. K.; Tsiakaras, P. Worm-like S-doped RhNi Alloys as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Appl. Catal. 2019, 255, 117737.
  • Shin, D.; Kim, H. J.; Kim, M.; Shin, D.; Kim, H.; Song, H.; Choi, S.-I. Fe X Ni2–x P Alloy Nanocatalysts with Electron-Deficient Phosphorus Enhancing the Hydrogen Evolution Reaction in Acidic Media. ACS Catal. 2020, 10, 11665–11673.
  • Wang, G.; Chen, W.; Chen, G.; Huang, J.; Song, C.; Chen, D.; Du, Y.; Li, C.; Ostrikov, K. K. Trimetallic Mo–Ni–Co Selenides Nanorod Electrocatalysts for highly-efficient and ultra-stable Hydrogen Evolution. Nano Energy. 2020, 71, 104637.
  • Zheng, Y.; Shang, P.; Pei, F.; Ma, G.; Ye, Z.; Peng, X.; Li, D. Achieving an Efficient Hydrogen Evolution Reaction with a Bicontinuous Nanoporous PtNiMg Alloy of Ultralow Noble-metal Content at an Ultrawide Range of Current Densities. Chem. Eng. J. 2022, 433, 134571.
  • Gao, L.; Yang, Z.; Sun, T.; Tan, X.; Lai, W.; Li, M.; Kim, J.; Lu, Y. F.; Choi, S. I.; Zhang, W. Autocatalytic Surface Reduction‐Assisted Synthesis of PtW Ultrathin Alloy Nanowires for Highly Efficient Hydrogen Evolution Reaction. Adv. Energy Mater. 2022, 12, 2103943.
  • Kim, T.; Roy, S. B.; Moon, S.; Yoo, S.; Choi, H.; Parale, V. G.; Kim, Y.; Lee, J.; Jun, S. C.; Kang, K. Highly Dispersed Pt Clusters on F-Doped Tin (IV) Oxide Aerogel Matrix: An Ultra-Robust Hybrid Catalyst for Enhanced Hydrogen Evolution. ACS Nano. 2022, 16, 1625–1638.
  • Mu, X.; Gu, J.; Feng, F.; Xiao, Z.; Chen, C.; Liu, S.; Mu, S., RuRh Bimetallene Nanoring as High‐efficiency pH‐Universal Catalyst for Hydrogen Evolution Reaction, Adv. Sci. 8 (2021) 2002341
  • Wang, M.; Wang, J. Q.; Xi, C.; Cheng, C. Q.; Kuai, C. G.; Zheng, X. L.; Zhang, R.; Xie, Y. M.; Dong, C. K.; Chen, Y. J. Valence‐State Effect of Iridium Dopant in NiFe (OH) 2 Catalyst for Hydrogen Evolution Reaction. Small. 2021, 17, 2100203.
  • Shan, A.; Teng, X.; Zhang, Y.; Zhang, P.; Xu, Y.; Liu, C.; Li, H.; Ye, H.; Wang, R. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy. 2022, 94, 106913.
  • Yang, D.; Li, P.; Gao, X.-Y.; Han, J.; Liu, Z.-Y.; Yang, Y.-P.; Yang, J.-H. Modulating Surface Segregation of Ni2P-Ru2P/CCG Nanoparticles for Boosting Hydrogen Evolution Reaction in pH-universal. Chem. Eng. J. 2022, 432, 134422.
  • Tu, K.; Tranca, D.; Rodríguez‐Hernández, F.; Jiang, K.; Huang, S.; Zheng, Q.; Chen, M. X.; Lu, C.; Su, Y.; Chen, Z. A Novel Heterostructure Based on RuMo Nanoalloys and N‐doped Carbon as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Adv. Mater. 2020, 32, 2005433.
  • Zhang, F.; Zhu, Y.; Chen, Y.; Lu, Y.; Lin, Q.; Zhang, L.; Tao, S.; Zhang, X.; Wang, H. RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction. J. Mater. Chem. A. 2020, 8, 12810–12820.
  • Jin, M.; Zhang, X.; Shi, R.; Lian, Q.; Niu, S.; Peng, O.; Wang, Q.; Cheng, C. Hierarchical CoP@ Ni2P Catalysts for pH-universal Hydrogen Evolution at High Current Density. Appl. Catal. B. 2021, 296, 120350.
  • Li, M.; Sun, H.; Yang, J.; Humayun, M.; Li, L.; Xu, X.; Xue, X.; Habibi-Yangjeh, A.; Temst, K.; Wang, C. Mono-coordinated Metallocene Ligands Endow metal-organic Frameworks with Highly Efficient Oxygen Evolution and Urea Electrolysis. Chem. Eng. J. 2022, 430, 132733.
  • Chen, B.; Humayun, M.; Li, Y.; Zhang, H.; Sun, H.; Wu, Y.; Wang, C. Constructing Hierarchical Fluffy CoO–Co4N@ NiFe-LDH Nanorod Arrays for Highly Effective Overall Water Splitting and Urea Electrolysis. ACS Sustainable Chem. Eng. 2021, 9, 14180–14192.
  • Xie, M.; Bian, J.; Humayun, M.; Qu, Y.; Feng, Y.; Jing, L. The Promotion Effect of Surface Negative Electrostatic Field on the Photogenerated Charge Separation of BiVO4 and Its Contribution to the Enhanced PEC Water Oxidation. Chem. Commun. 2015, 51, 2821–2823.
  • Zhang, X.; Cui, H.; Humayun, M.; Qu, Y.; Fan, N.; Sun, X.; Jing, L. Exceptional Performance of Photoelectrochemical Water Oxidation of single-crystal Rutile TiO2 Nanorods Dependent on the Hole Trapping of Modified Chloride. Sci. Rep. 2016, 6, 21430.
  • Song, Z.; Zhang, L.; Doyle‐Davis, K.; Fu, X.; Luo, J. L.; Sun, X. Recent Advances in MOF‐derived Single Atom Catalysts for Electrochemical Applications. Adv. Energy Mater. 2020, 10, 2001561.
  • Zhang, J.; Qian, J.; Ran, J.; Xi, P.; Yang, L.; Gao, D. Engineering Lower Coordination Atoms onto NiO/Co3O4 Heterointerfaces for Boosting Oxygen Evolution Reactions. ACS Catal. 2020, 10, 12376–12384.
  • Zhao, Y.; Wang, Y.; Dong, Y.; Carlos, C.; Li, J.; Zhang, Z.; Li, T.; Shao, Y.; Yan, S.; Gu, L. Quasi-two-dimensional earth-abundant bimetallic electrocatalysts for oxygen evolution reactions. ACS Energy Lett. 2021, 6, 3367–3375.
  • Qiu, L.; Zheng, G.; He, Y.; Lei, L.; Zhang, X. Ultra-small Sn-RuO2 nanoparticles supported on N‑doped carbon polyhedra for highly active and durable oxygen evolution reaction in acidic media. Chem. Eng. J. 2021, 409, 128155.
  • Alharthy, M.; Suliman, M. H.; Al-Betar, A.-R.; Wang, Y.; Tian, Z.; Drmosh, Q. A.; Yamani, Z. H.; Qamar, M. Reaping the Catalytic Benefits of Both Surface (Nife 2 O 4) and Underneath (Ni 3 Fe) Layers for the Oxygen Evolution Reaction. Sustain Energy Fuels. 2021, 5, 2704–2714.
  • Suliman, M.; Al Ghamdi, A.; Baroud, T.; Drmosh, Q.; Rafatullah, M.; Yamani, Z.; Qamar, M. Growth of Ultrathin Nanosheets of Nickel Iron Layered Double Hydroxide for the Oxygen Evolution Reaction. Int. J. Hydrogen Energy. 2022, 47, 23498–23507.
  • Li, R.; Wang, Y.; Chen, B.; Zhang, H.; Yan, C.; Xu, X.; Humayun, M.; Debecker, D. P.; Wang, C. Core-shell Structured Co (OH) F@ FeOOH Enables Highly Efficient Overall Water Splitting in Alkaline Electrolyte. Int. J. Hydrogen Energy. 2024, 51, 1292–1302.
  • Huang, Y.; Zhang, S. L.; Lu, X. F.; Wu, Z. P.; Luan, D.; Lou, X. W. Trimetallic Spinel NiCO2− xFexO4 Nanoboxes for Highly Efficient Electrocatalytic Oxygen Evolution. Angew. Chem. Int. Ed. 2021, 133, 11947–11952.
  • Solomon, G.; Landström, A.; Mazzaro, R.; Jugovac, M.; Moras, P.; Cattaruzza, E.; Morandi, V.; Concina, I.; Vomiero, A. NiMoO4@ Co3O4 core–shell Nanorods: In Situ Catalyst Reconstruction toward High Efficiency Oxygen Evolution Reaction. Adv. Energy Mater. 2021, 11, 2101324.
  • Yu, L.; Zhang, G.; Chen, H.; Zeng, J.; Liu, Y.; Yang, Q.; Zhong, L.; Qiu, Y. Ultrathin hollow hemisphere-carbon-anchored Ni 3 FeN nanoparticles as nanoreactors facilitating the formation of NiC x with long-term durability for the oxygen evolution reaction. J. Mater. Chem. A. 2022, 10, 7911–7919.
  • Xue, Y.; Fang, J.; Wang, X.; Xu, Z.; Zhang, Y.; Lv, Q.; Liu, M.; Zhu, W.; Zhuang, Z. Sulfate‐Functionalized RuFeOx as Highly Efficient Oxygen Evolution Reaction Electrocatalyst in Acid. Adv. Funct. Mater. 2021, 31, 2101405.
  • Lin, X.; Cao, S.; Chen, H.; Chen, X.; Wang, Z.; Zhou, S.; Xu, H.; Liu, S.; Wei, S.; Lu, X. Boosting Oxygen Evolution Reaction of Hierarchical Spongy NiFe-PBA/Ni3C (B) Electrocatalyst. Interfacial Engineering with Matchable Structure, Chem. Eng. J. 2022, 433, 133524.
  • Liu, C.; Han, Y.; Yao, L.; Liang, L.; He, J.; Hao, Q.; Zhang, J.; Li, Y.; Liu, H. Engineering Bimetallic NiFe‐Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highly‐Efficient Oxygen Evolution Reaction. Small. 2021, 17, 2007334.
  • Zhang, Y.; Wang, X.; Luo, F.; Tan, Y.; Zeng, L.; Fang, B.; Liu, A. Rock Salt Type NiCO2O3 Supported on Ordered Mesoporous Carbon as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Appl. Catal. B. 2019, 256, 117852.
  • Xu, S.; Gao, X.; Deshmukh, A.; Zhou, J.; Chen, N.; Peng, W.; Gong, Y.; Yao, Z.; Finkelstein, K. D.; Wan, B. Pressure-promoted Irregular CoMoP 2 Nanoparticles Activated by Surface Reconstruction for Oxygen Evolution Reaction Electrocatalysts. J. Mater. Chem. A. 2020, 8, 2001–2007.
  • Li, T.; Hu, Y.; Pan, X.; Yin, J.; Li, Y.; Wang, Y.; Zhang, Y.; Sun, H.; Tang, Y. N-carbon Supported Hierarchical Ni/Ni0. 2Mo0. 8N Nanosheets as high-efficiency Oxygen Evolution Electrocatalysts. Chem. Eng. J. 2020, 392, 124845.
  • Huang, W.-H.; Li, X.-M.; Yang, X.-F.; Zhang, H.-Y.; Liu, P.-B.; Ma, Y.-M.; Lu, X. CeO2-embedded Mesoporous CoS/MoS2 as Highly Efficient and Robust Oxygen Evolution Electrocatalyst. Chem. Eng. J. 2021, 420, 127595.
  • Wang, K.; Huang, B.; Zhang, W.; Lv, F.; Xing, Y.; Zhang, W.; Zhou, J.; Yang, W.; Lin, F.; Zhou, P. Ultrathin RuRh@(RuRh) O 2 Core@ Shell Nanosheets as Stable Oxygen Evolution Electrocatalysts. J. Mater. Chem. A. 2020, 8, 15746–15751.
  • Chen, S.; Huang, H.; Jiang, P.; Yang, K.; Diao, J.; Gong, S.; Liu, S.; Huang, M.; Wang, H.; Chen, Q. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media. ACS Catal. 2019, 10, 1152–1160.
  • Zhang, J.; Fu, X.; Xia, F.; Zhang, W.; Ma, D.; Zhou, Y.; Peng, H.; Wu, J.; Gong, X.; Wang, D. Core‐Shell Nanostructured Ru@ Ir–O Electrocatalysts for Superb Oxygen Evolution in Acid. Small. 2022, 18, 2108031.
  • Wang, J.; Kim, J.; Choi, S.; Wang, H.; Lim, J. A Review of Carbon‐supported Nonprecious Metals as Energy‐related Electrocatalysts. Small Methods. 2020, 4, 2000621.
  • Ge, Y.; Wang, X.; Huang, B.; Huang, Z.; Chen, B.; Ling, C.; Liu, J.; Liu, G.; Zhang, J.; Wang, G. Seeded Synthesis of Unconventional 2H-phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction. J. Am. Chem. Soc. 2021, 143, 17292–17299.
  • Sanad, M. F.; Puente Santiago, A. R.; Tolba, S. A.; Ahsan, M. A.; Fernandez-Delgado, O.; Shawky Adly, M.; Hashem, E. M.; Mahrous Abodouh, M.; El-Shall, M. S.; Sreenivasan, S. T. Co–Cu bimetallic metal organic framework catalyst outperforms the Pt/C benchmark for oxygen reduction. J. Am. Chem. Soc. 2021, 143, 4064–4073.
  • Liu, S.; Ren, H.; Yin, S.; Zhang, H.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Defect-rich Ultrathin AuPd Nanowires with Boerdijk–Coxeter Structure for Oxygen Reduction Electrocatalysis. Chem. Eng. J. 2022, 435, 134823.
  • Chen, Z.; Su, X.; Ding, J.; Yang, N.; Zuo, W.; He, Q.; Wei, Z.; Zhang, Q.; Huang, J.; Zhai, Y. Boosting Oxygen Reduction Reaction with Fe and Se dual-atom Sites Supported by nitrogen-doped Porous Carbon. Appl. Catal. B. 2022, 308, 121206.
  • Zhang, X.; Wang, J.; Zhang, M.; Yue, X.; Du, W.; Fan, W.; Xia, H. S-doped AuPd Aerogels as High Efficiency Catalysts for the Oxygen Reduction Reaction by Balancing the Ratio between Bridging S 2 2− and Apical S 2− Ligands. J. Mater. Chem. A. 2022, 10, 7800–7810.
  • Zhang, Z.-N.; Miao, B.-Q.; Wu, Z.-Q.; Chen, P.; Xiao, X.; Li, S.-N.; Chen, Y. Carbon Nanobowl Supported Chemically Functionalized PtRh Nanocrystals: A Highly Active and Methanol Tolerant Electrocatalyst Towards the Oxygen Reduction Reaction. J. Mater. Chem. A. 2021, 9, 25621–25628.
  • Gupta, S.; Qiao, L.; Zhao, S.; Xu, H.; Lin, Y.; Devaguptapu, S. V.; Wang, X.; Swihart, M. T.; Wu, G. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template‐free Graphitization for Bifunctional Oxygen Reduction and Evolution. Adv. Energy Mater. 2016, 6, 1601198.
  • Yin, S.; Liu, S.; Jiao, S.; Zhang, H.; Xu, Y.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Tannic Acid Decorated AuPd lavender-like Nanochains for Enhanced Oxygen Reduction Electrocatalysis. J. Mater. Chem. A. 2021, 9, 15678–15683.
  • Sahoo, L.; Garg, R.; Kaur, K.; Vinod, C.; Gautam, U. K. Ultrathin Twisty PdNi Alloy Nanowires as Highly Active ORR Electrocatalysts Exhibiting Morphology-Induced Durability over 200 K Cycles. Nano Lett. 2022, 22, 246–254.
  • Xue, Q.; Sun, H.-Y.; Li, Y.-N.; Zhong, M.-J.; Li, F.-M.; Tian, X.; Chen, P.; Yin, S.-B.; Chen, Y. Au@ Ir core-shell Nanowires Towards Oxygen Reduction Reaction. Chem. Eng. J. 2021, 421, 129760.
  • Ithisuphalap, K.; Zhang, H.; Guo, L.; Yang, Q.; Yang, H.; Wu, G. Photocatalysis and Photoelectrocatalysis Methods of Nitrogen Reduction for Sustainable Ammonia Synthesis. Small Methods. 2019, 3, 1800352.
  • Wan, Y.; Xu, J.; Lv, R. Heterogeneous Electrocatalysts Design for Nitrogen Reduction Reaction under Ambient Conditions, Mater. Today. 2019, 27, 69–90.
  • Chen, G. F.; Ren, S.; Zhang, L.; Cheng, H.; Luo, Y.; Zhu, K.; Ding, L. X.; Wang, H. Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods. 2019, 3, 1800337.
  • Li, M.; Huang, H.; Low, J.; Gao, C.; Long, R.; Xiong, Y. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods. 2019, 3, 1800388.
  • Yan, D.; Li, H.; Chen, C.; Zou, Y.; Wang, S. Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions. Small Methods. 2019, 3, 1800331.
  • Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au Sub‐nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions. Adv. Mater. 2017, 29, 1606550.
  • Zhou, J.-H.; Zhang, Y.-W. Metal-based Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide and Nitrogen: Mechanisms, Recent Advances and Perspective. Reaction Chem. Eng. 2018, 3, 591–625.
  • Wang, H.; Mao, Q.; Yu, H.; Wang, S.; Xu, Y.; Li, X.; Wang, Z.; Wang, L. Enhanced electrocatalytic performance of mesoporous Au-Rh bimetallic films for ammonia synthesis. Chem. Eng. J. 2021, 418, 129493.
  • Wang, P.; Nong, W.; Li, Y.; Cui, H.; Wang, C. Strengthening Nitrogen Affinity on CuAu@ Cu core–shell Nanoparticles with Ultrathin Cu Skin via Strain Engineering and Ligand Effect for Boosting Nitrogen Reduction Reaction. Appl. Catal. B. 2021, 288, 119999.
  • Liu, P.-Y.; Shi, K.; Chen, W.-Z.; Gao, R.; Liu, Z.-L.; Hao, H.; Wang, Y.-Q. Enhanced Electrocatalytic Nitrogen Reduction Reaction Performance by Interfacial Engineering of MOF-based Sulfides FeNi2S4/NiS hetero-interface. Appl. Catal. B. 2021, 287, 119956.
  • Wang, X.; Luo, M.; Lan, J.; Peng, M.; Tan, Y. Nanoporous Intermetallic Pd3Bi for Efficient Electrochemical Nitrogen Reduction. Adv. Mater. 2021, 33, 2007733.
  • Tong, Y.; Guo, H.; Liu, D.; Yan, X.; Su, P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy Engineering of Iron‐doped W18O49 Nanoreactors for Low‐barrier Electrochemical Nitrogen Reduction. Angew. Chem. Int. Ed. 2020, 132, 7426–7431.
  • Zhao, R.; Wang, G.; Mao, Y.; Bao, X.; Wang, Z.; Wang, P.; Liu, Y.; Zheng, Z.; Dai, Y.; Cheng, H. Li-intercalation Boosted Oxygen Vacancies Enable Efficient Electrochemical Nitrogen Reduction on Ultrathin TiO2 Nanosheets. Chem. Eng. J. 2022, 430, 133085.
  • Tan, Y.; Yan, L.; Huang, C.; Zhang, W.; Qi, H.; Kang, L.; Pan, X.; Zhong, Y.; Hu, Y.; Ding, Y. Fabrication of an Au25‐Cys‐Mo Electrocatalyst for Efficient Nitrogen Reduction to Ammonia under Ambient Conditions. Small. 2021, 17, 2100372.
  • Liu, W.; Han, L.; Wang, H.-T.; Zhao, X.; Boscoboinik, J. A.; Liu, X.; Pao, C.-W.; Sun, J.; Zhuo, L.; Luo, J. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy. 2020, 77, 105078.
  • Zhao, L.; Liu, X.; Zhang, S.; Zhao, J.; Xu, X.; Du, Y.; Sun, X.; Zhang, N.; Zhang, Y.; Ren, X. Rational Design of Bimetallic Rh 0.6 Ru 0.4 Nanoalloys for Enhanced Nitrogen Reduction Electrocatalysis under Mild Conditions. J. Mater. Chem. A. 2021, 9, 259–263.
  • Tong, W.; Huang, B.; Wang, P.; Li, L.; Shao, Q.; Huang, X. Crystal‐phase‐engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angew. Chem. Int. Ed. 2020, 132, 2671–2675.
  • Zhang, J.; Ji, Y.; Wang, P.; Shao, Q.; Li, Y.; Huang, X. Adsorbing and Activating N2 on Heterogeneous Au–Fe3O4 Nanoparticles for N2 Fixation. Adv. Funct. Mater. 2020, 30, 1906579.
  • Guo, C.; Liu, X.; Gao, L.; Kuang, X.; Ren, X.; Ma, X.; Zhao, M.; Yang, H.; Sun, X.; Wei, Q. Fe-doped Ni2P Nanosheets with Porous Structure for Electroreduction of Nitrogen to Ammonia under Ambient Conditions. Appl. Catal. B. 2020, 263, 118296.
  • Zhang, X.; Feizpoor, S.; Humayun, M.; Wang, C. Urea Oxidation Reaction Electrocatalysts: Correlation of Structure, Activity, and Selectivity. Chem. Cat. 2024, 4(2), 100840.
  • Qiu, Y.; Zhang, J.; Jin, J.; Sun, J.; Tang, H.; Chen, Q.; Zhang, Z.; Sun, W.; Meng, G.; Xu, Q. Construction of Pd-Zn Dual Sites to Enhance the Performance for Ethanol electro-oxidation Reaction. Nat. Commun. 2021, 12, 1–9.
  • Luo, S.; Chen, W.; Cheng, Y.; Song, X.; Wu, Q.; Li, L.; Wu, X.; Wu, T.; Li, M.; Yang, Q. Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation. Adv. Mater. 2019, 31, 1903683.
  • Yu, Z.-Y.; Lang, -C.-C.; Gao, M.-R.; Chen, Y.; Fu, -Q.-Q.; Duan, Y.; Yu, S.-H. Ni–Mo–O nanorod-derived Composite Catalysts for Efficient Alkaline water-to-hydrogen Conversion via Urea Electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897.
  • Li, F.; Chen, J.; Zhang, D.; Fu, W.-F.; Chen, Y.; Wen, Z.; Lv, X.-J. Heteroporous MoS2/Ni3S2 Towards Superior Electrocatalytic Overall Urea Splitting. Chem. Commun. 2018, 54, 5181–5184.
  • Wu, F.; Ou, G.; Yang, J.; Li, H.; Gao, Y.; Chen, F.; Wang, Y.; Shi, Y. Bifunctional Nickel oxide-based Nanosheets for Highly Efficient Overall Urea Splitting. Chem. Commun. 2019, 55, 6555–6558.
  • King, R. L.; Botte, G. G. Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis. J. Power Sources. 2011, 196, 9579–9584.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.