951
Views
37
CrossRef citations to date
0
Altmetric
Theory and Methods

Approximations of the Optimal Importance Density Using Gaussian Particle Flow Importance Sampling

Pages 748-762 | Received 01 Jun 2014, Published online: 18 Aug 2016
 

ABSTRACT

Recently developed particle flow algorithms provide an alternative to importance sampling for drawing particles from a posterior distribution, and a number of particle filters based on this principle have been proposed. Samples are drawn from the prior and then moved according to some dynamics over an interval of pseudo-time such that their final values are distributed according to the desired posterior. In practice, implementing a particle flow sampler requires multiple layers of approximation, with the result that the final samples do not in general have the correct posterior distribution. In this article we consider using an approximate Gaussian flow for sampling with a class of nonlinear Gaussian models. We use the particle flow within an importance sampler, correcting for the discrepancy between the target and actual densities with importance weights. We present a suitable numerical integration procedure for use with this flow and an accompanying step-size control algorithm. In a filtering context, we use the particle flow to sample from the optimal importance density, rather than the filtering density itself, avoiding the need to make analytical or numerical approximations of the predictive density. Simulations using particle flow importance sampling within a particle filter demonstrate significant improvement over standard approximations of the optimal importance density, and the algorithm falls within the standard sequential Monte Carlo framework.

View correction statement:
Correction

The authors are supported by the EPSRC BTaRoT grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 343.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.