109
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Breast Cancer Cell Apoptosis is Synergistically Induced by Curcumin, Trastuzumab, and Glutathione Peroxidase-1 but Robustly Inhibited by Glial Cell Line-Derived Neurotrophic Factor

, , &
Pages 288-296 | Received 16 Dec 2016, Accepted 25 Aug 2017, Published online: 03 Jan 2018
 

ABSTRACT

We hypothesized that synergy between curcumin (CURC), trastuzumab (TZMB), and glutathione peroxidase-1 (GPX-1) accelerates breast cancer (BC) cell apoptosis which is inhibited by glial cell line-derived neurotrophic factor (GDNF). We measured survival of BC cell lines treated or cotreated with CURC and TZMB, and then with GDNF, before measuring expression levels of growth and apoptosis genes. These experiments were also repeated on SKBR3 cells transiently expressing GPX-1.

CURC+TZMB cotreatment induced BC cell apoptosis more significantly than single treatment. GDNF highly inhibited CURC+TZMB toxicity and restored survival. Ectopic overexpression of GPX-1 per se induced SKBR3 cell death that was accelerated upon CURC+TZMB cotreatment. This substantial death induction was inhibited by GDNF more robustly than in single-treated cells. All these changes correlated with changes in expression levels of key molecules and were further confirmed by flow cytometry and correlation analysis.

Our data indicate apoptotic induction is jointly shaped in BC cells by CURC, TZMB, and GPX-1 which correlates directly with their tripartite synergism and inversely with GDNF progrowth effects. In light of the active presence of GDNF in tumor microenvironment and necessity to overcome drug resistance, our findings can help in designing combined therapeutic strategies with implications for challenging TZMB resistance in BC.

Conflict of Interest Disclosure

The authors declare no conflict of interest.

Acknowledgment

We appreciate our colleagues in NIGE for giving us scientific advice.

Additional information

Funding

This study was financially supported by NIGEB (Project-307).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.