109
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Breast Cancer Cell Apoptosis is Synergistically Induced by Curcumin, Trastuzumab, and Glutathione Peroxidase-1 but Robustly Inhibited by Glial Cell Line-Derived Neurotrophic Factor

, , &
Pages 288-296 | Received 16 Dec 2016, Accepted 25 Aug 2017, Published online: 03 Jan 2018

References

  • Debatin K-M, and Krammer PH: Death receptors in chemotherapy and cancer. Oncogene 23, 2950–2966, 2004. doi:10.1038/sj.onc.1207558.
  • Luqmani YA.: Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14(suppl 1), 35–48, 2005. doi:10.1159/000086183.
  • Coley HM.: Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev 34, 378–390, 2008. doi:10.1016/j.ctrv.2008.01.007.
  • Nahta R, and Esteva F: HER-2-targeted therapy–lessons learned and future directions. Clin Cancer Res 9, 5048–5078, 2003.
  • Albanell J, Codony J, Rovira A, Mellado B, and Gascon P: Mechanism of action of anti-HER2 monoclonal antibodies, scientific update on trastuzumab and 2C4. Adv Exp Med Biol 532, 253–268, 2003. doi:10.1007/978-1-4615-0081-0_21.
  • Spector NL, and Blackwell KL: Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27, 5838–5847, 2003. doi:10.1200/JCO.2009.22.1507.
  • Pohlmann PR, Mayer IA, and Mernaugh R: Resistance to trastuzumab in breast cancer. Clin Cancer Res 15, 7479–7491, 2009. doi:10.1158/1078-0432.CCR-09-0636.
  • Karunagaran D, Rashmi R, and Kumar TR: Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Targets 5(2), 117–29, 2005. doi:10.2174/1568009053202081.
  • Lv Z.-D, Liu X-P, Zhao W-J, Dong Q, Li F-N, Wang H-B, and Kong B.: Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol 7(6), 2818–2824, 2014.
  • Hu YJ, and Diamond AM: Role of glutathione peroxidase 1 in breast cancer, loss of heterozygosity and allelic differences in the response to selenium. Cancer Res 63, 3347–3351, 2003.
  • Lin LF, Doherty DH, Lile JD, Bektesh S, and Collins F: GDNF a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132, 1993. doi:10.1126/science.8493557.
  • Esseghir S, Todd SK, Hunt T, Poulsom R, Plaza-Menacho I, Reis-Filho JS, and Isacke, CM: A role for glial cell derived neurotrophic factor induced expression by inflammatory cytokines and RET/GFR alpha 1 receptor up-regulation in breast cancer. Cancer Res 67, 11732–41, 2009. doi:10.1158/0008-5472.CAN-07-2343.
  • Esmaeilzadeh E, Gardaneh M, Gharib E, and Sabouni F: Shikonin protects dopaminergic cell line PC12 against 6-hydroxydopamine-mediated neurotoxicity via both glutathione-dependent and independent pathways and by inhibiting apoptosis. Neurochem Res 38, 1590–1604, 2013. doi:10.1007/s11064-013-1061-9.
  • Chou TC, and Talalay P: Quantitative analysis of dose-effect relationships, the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22, 27–55, 1984. doi:10.1016/0065-2571(84)90007-4.
  • Gardaneh M, Gholami M. and Maghsoudi N: Synergy between glutathione peroxidase-1 and astrocytic growth factors suppresses free radical generation and protects dopaminergic neurons against 6-Hydroxydopamine. Rejuvenation Res 14, 195–204, 2011. doi:10.1089/rej.2010.1080.
  • Gharib E, Gardaneh M, and Shojaei S: Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities. Rejuvenation Res 16, 185–199, 2013. doi:10.1089/rej.2012.1390.
  • Carmona-Ramírez I, Santamaría A, Tobón-Velasco JC, Orozco-Ibarra M, González-Herrera IG, Pedraza-Chaverrí J, and Maldonado PD: Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. J Nutr Biochem 24(1), 14–24, 2013. doi:10.1016/j.jnutbio.2011.12.010.
  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, and Hung MC: HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol3, 973–82, 2001. doi:10.1038/ncb1101-973.
  • Choudhuri T, Pal S, Das T, and Sa G: curcumin selectively induces apoptosis in deregulated cyclin d1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280, 20059–20068, 2005. doi:10.1074/jbc.M410670200.
  • Hussain SP, Amstad P, He P, Robles A, Lupold S, Kaneko I, Ichimiya M, Sengupta S, Mechanic L, Okamura S, et al.: p53-induced up-regulation of MnSOD and GPx but not catalase increases oxidative stress and apoptosis. Cancer Res 67, 2350–6, 2004. doi:10.1158/0008-5472.CAN-2287-2.
  • Li L, Chen H, Chen F, Li F, Wang M, Wang L, Li Y, and Gao D: Effects of glial cell line-derived neurotrophic factor on microRNA expression in a 6-hydroxydopamine-injured dopaminergic cell line. J Neural Transm 120(11): 1511–23, 2013. doi:10.1007/s00702-013-1031-z.
  • Maheu M, Lopez J P, Crapper L, Davoli M A, Turecki G, and Mechawar N: MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression. Transl Psychiatry 5(2), e511, 2015. doi:10.1038/tp.2015.11.
  • Shang J, Deguchi K, Yamashita T, Ohta Y, Zhang H, Morimoto N, Liu N, Zhang X, Tian F, Matsuura T, Funakoshi H, Nakamura T, and Abe K: Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res 88, 2197–2206, 2010. doi:10.1002/jnr.22373.
  • Shojaei S, and Gardaneh M: Maximum inhibition of breast cancer/stem cell growth by concomitant blockage of key receptors. J Med Hypotheses Ideas 6, 44–49, 2012. doi:10.1016/j.jmhi.2012.06.001.
  • Luu T, Chung C, and Somlo G: Combining emerging agents in advanced breast cancer. Oncologist 16, 760–771, 2011. doi:10.1634/theoncologist.2010-0345.
  • Goltsov A, Deeni Y, Khalil HS, Soininen T, Kyriakidis S, Hu H, Langdon SP, Harrison DJ, and Bown J: Systems analysis of drug-induced receptor tyrosine kinase reprogramming following targeted mono- and combination anti-cancer therapy. Cells 3(2), 563–591, 2014. doi:10.3390/cells3020563.
  • Narayan M, Wilken JA, Harris LN, and Baron AT: Kimbler KD, Maihle NJ. Trastuzumab-induced HER reprogramming in “resistant” breast carcinoma cells. Cancer Res 69, 2191–2194, 2009. doi:10.1158/0008-5472.CAN-08-1056.
  • Sun C, and Bernards R: Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci 39(10), 465–474, 2014. doi:10.1016/j.tibs.2014.08.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.