229
Views
37
CrossRef citations to date
0
Altmetric
Articles

Synergistic Antiproliferative Effects of Co-nanoencapsulated Curcumin and Chrysin on MDA-MB-231 Breast Cancer Cells Through Upregulating miR-132 and miR-502c

, , , , , & ORCID Icon show all
Pages 1201-1213 | Received 04 Mar 2018, Accepted 12 Mar 2019, Published online: 07 Apr 2019
 

Abstract

In this study, we explored whether co-nanoencapsulated Curcumin (Cur) and Chrysin (Chr), natural herbal compounds with antitumor activities, regulate miR-132 and miR-502c and their downstream targets, leading to the synergistic growth inhibition in MDA-MB-231 breast cancer cells. For this purpose, Cur and Chr were co-encapsulated into PLGA-PEG nanoparticles (NPs) and characterized through DLS, FTIR and FE-SEM. MTT assay and cell cycle arrest analysis revealed that CurChr-loaded NPs had a considerable synergistic cytotoxicity against MDA-MB-231 cells with more cell accumulation in G2/M phase compared to the other groups. In addition, highest percentage of cell apoptosis was acquired in cells treated with CurChr-loaded NPs according to apoptosis analysis. Real-time PCR findings revealed that co-encapsulated form of Cur and Chr than free combination could further upregulate miR-132 and miR-502c expression (P < 0.001). Also, the strong reduction was detected in the protein levels of HN1 and P65 at the cells co-nanodelivered with Cur and Chr. These findings demonstrated that the co-nanodelivery of Cur and Chr through targeting miR-132 and miR-205c might be a novel strategy for the treatment of breast cancer.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Author’s Contribution

NZ and MHKA designed and directed the project; NJ, MD, MK and MB processed the experimental data and performed the analysis; NJ and MRY drafted the manuscript and designed the figures. NZ and MHKA contributed to the final version of the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 53.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 633.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.