229
Views
37
CrossRef citations to date
0
Altmetric
Articles

Synergistic Antiproliferative Effects of Co-nanoencapsulated Curcumin and Chrysin on MDA-MB-231 Breast Cancer Cells Through Upregulating miR-132 and miR-502c

, , , , , & ORCID Icon show all
Pages 1201-1213 | Received 04 Mar 2018, Accepted 12 Mar 2019, Published online: 07 Apr 2019

References

  • Maasomi ZJ, Soltanahmadi YP, Dadashpour M, Alipour S, Abolhasani S, and Zarghami N: Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. Asian Pacific J Cancer Prevent 18, 1283, 2017.
  • Siegel RL, Miller KD, and Jemal A: Cancer statistics, 2018. CA: A Cancer Journal for Clinicians 68, 7–30, 2018.
  • Singh R and Mo YY: Role of microRNAs in breast cancer. Cancer Biol Ther 14, 201–212, 2013.
  • Vannini I, Fanini F, and Fabbri M: Emerging roles of microRNAs in cancer. Curr Opin Genet Develop 48, 128–133, 2018.
  • Dadashpour M, Pilehvar-Soltanahmadi Y, Mohammadi SA, Zarghami N, Pourhassan-Moghaddam M, et al.: Watercress-based electrospun nanofibrous scaffolds enhance proliferation and stemness preservation of human adipose-derived stem cells. Artif Cells Nanomed Biotechnol 46, 819–830, 2018.
  • Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, et al.: Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytother Res 31, 1651–1668, 2017.
  • Chandra D: Mitochondria as Targets for Phytochemicals in Cancer Prevention and Therapy. New York: Springer; 2016.
  • Dalasanur Nagaprashantha L, Adhikari R, Singhal J, Chikara S, Awasthi S, et al.: Translational opportunities for broad-spectrum natural phytochemicals and targeted agent combinations in breast cancer. Int J Cancer 142, 658–670, 2018.
  • Amirsaadat S, Pilehvar-Soltanahmadi Y, Zarghami F, Alipour S, Ebrahimnezhad Z, et al.: Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells. Artif Cells Nanomed Biotechnol 45, 1649–1656, 2017.
  • Alibakhshi A, Ranjbari J, Pilehvar-Soltanahmadi Y, Nasiri M, Mollazade M, et al.: An update on phytochemicals in molecular target therapy of cancer: potential inhibitory effect on telomerase activity. Curr Med Chem 23, 2380–2393, 2016.
  • Nath NC: Role of phytochemicals in the modulation of miRNA expression in cancer. Food Funct 8, 3432–3442, 2017.
  • Sadeghzadeh H, Pilehvar-Soltanahmadi Y, Akbarzadeh A, Dariushnejad H, Sanjarian F, et al.: The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents 17, 1363–1373, 2017.
  • Pirmoradi S, Fathi E, Farahzadi R, Pilehvar-Soltanahmadi Y, and Zarghami N: Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res (Stuttg) 68, 213–221, 2018.
  • Norouzi S, Majeed M, Pirro M, Generali D, and Sahebkar A: Curcumin as an adjunct therapy and microRNA modulator in breast cancer. Current Pharmaceutical Design 24, 171–177, 2017.
  • Deldar Y, Pilehvar-Soltanahmadi Y, Dadashpour M, Montazer Saheb S, Rahmati-Yamchi M, et al.: An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications. Artif Cells Nanomed Biotechnol 46, 706–716, 2018.
  • Kasala ER, Bodduluru LN, Barua CC, and Gogoi R: Chrysin and its emerging role in cancer drug resistance. Chem Biol Interact 236, 7–8, 2015.
  • Anari E, Akbarzadeh A, and Zarghami N: Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line. Artif Cells Nanomed Biotechnol 44, 1410–1416, 2016.
  • Eatemadi A, Daraee H, Aiyelabegan HT, Negahdari B, Rajeian B, et al.: Synthesis and characterization of chrysin-loaded PCL-PEG-PCL nanoparticle and its effect on breast cancer cell line. Biomed Pharmacother 84, 1915–1922, 2016.
  • Kasala ER, Bodduluru LN, Madana RM, V AK, Gogoi R, et al.: Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol Lett 233, 214–225, 2015.
  • Mohammadian F, Pilehvar-Soltanahmadi Y, Alipour S, Dadashpour M, and Zarghami N: Chrysin Alters microRNAs expression levels in gastric cancer cells: possible molecular mechanism. Drug Res (Stuttg) 67, 509–514, 2017.
  • Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, et al.: Curcumin as a microRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol, 171, 1–38, 2016.
  • Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, and Zarghami N: Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells. Artif Cells Nanomed Biotechnol 45, 1201–1206, 2017.
  • Montazeri M, Pilehvar-Soltanahmadi Y, Mohaghegh M, Panahi A, Khodi S, et al.: Antiproliferative and apoptotic effect of dendrosomal curcumin nanoformulation in P53 mutant and wide-type cancer cell lines. Anticancer Agents Med Chem 17, 662–673, 2017.
  • Farajzadeh R, Zarghami N, Serati-Nouri H, Momeni-Javid Z, Farajzadeh T, et al.: Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol 46, 917–925, 2018.
  • Montazeri M, Sadeghizadeh M, Pilehvar-Soltanahmadi Y, Zarghami F, Khodi S, et al.: Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines. Int J Pharm 509, 244–254, 2016.
  • Pilehvar-Soltanahmadi Y, Dadashpour M, Mohajeri A, Fattahi A, Sheervalilou R, et al.: An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Rev Med Chem 18, 414–427, 2018.
  • Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, et al.: Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer 69, 1290–1299, 2017.
  • Jalilzadeh-Tabrizi S, Pilehvar-Soltanahmadi Y, Alizadeh E, Alipour S, Dadashpour M, et al.: A biomimetic emu oil-blended electrospun nanofibrous mat for maintaining stemness of adipose tissue-derived stem cells. Biopreserv Biobanking 16, 66–76, 2018.
  • Nejati-Koshki K, Pilehvar-Soltanahmadi Y, Alizadeh E, Ebrahimi-Kalan A, Mortazavi Y, et al.: Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug Dev Ind Pharm 43, 1978–1988, 2017.
  • Farajzadeh R, Zarghami N, Serati-Nouri H, Momeni-Javid Z, Farajzadeh T, et al.: Macrophage repolarization using CD44-targeting hyaluronic acid-polylactide nanoparticles containing curcumin. Artif Cells Nanomed Biotechnol 46, 2013–2021, 2018.
  • Jafari-Gharabaghlou D, Pilehvar-Soltanahmadi Y, Dadashpour M, Mota A, Vafajouy-Jamshidi S, et al.: Combination of metformin and phenformin synergistically inhibits proliferation and hTERT expression in human breast cancer cells. Iranian J Basic Med Sci 21, 1167, 2018.
  • Dadashpour M, Firouzi-Amandi A, Pourhassan-Moghaddam M, Maleki MJ, Soozangar N, et al.: Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Mater Sci Eng C Mater Biol Appl 92, 902–912, 2018.
  • Pilehvar-Soltanahmadi Y, Nouri M, Martino MM, Fattahi A, Alizadeh E, et al.: Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp Cell Res 357, 192–201, 2017.
  • Nejati-Koshki K, Mortazavi Y, Pilehvar-Soltanahmadi Y, Sheoran S, and Zarghami N: An update on application of nanotechnology and stem cells in spinal cord injury regeneration. Biomed Pharmacother 90, 85–92, 2017.
  • Firouzi-Amandi A, Dadashpour M, Nouri M, Zarghami N, Serati-Nouri H, et al.: Chrysin-nanoencapsulated PLGA-PEG for macrophage repolarization: Possible application in tissue regeneration. Biomed Pharmacother 105, 773–780, 2018.
  • Javidfar S, Pilehvar-Soltanahmadi Y, Farajzadeh R, Lotfi-Attari J, Shafiei-Irannejad V, et al.: The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells. J Drug Deliv Sci Technol 43, 19–26, 2018.
  • Mehrabi M, Dounighi NM, Rezayat Sorkhabadi SM, Doroud D, Amani A, et al.: Development and physicochemical, toxicity and immunogenicity assessments of recombinant hepatitis B surface antigen (rHBsAg) entrapped in chitosan and mannosylated chitosan nanoparticles: as a novel vaccine delivery system and adjuvant. Artif Cells Nanomed Biotechnol 46, 230–240, 2018.
  • Xiao B, Si X, Han MK, Viennois E, Zhang M, et al.: Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J Mater Chem B 3, 7724–7733, 2015.
  • Ashton JC: Drug combination studies and their synergy quantification using the Chou–Talalay method. Cancer Res 75, 2400, 2015.
  • Hu S, Xu Y, Meng L, Huang L, and Sun H: Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 16, 1266–1272, 2018.
  • Khoo BY, Chua SL, and Balaram P: Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 11, 2188–2199, 2010.
  • Mayol L, Serri C, Menale C, Crispi S, Piccolo MT, et al.: Curcumin loaded PLGA–poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells. Eur J Pharm Biopharm 93, 37–45, 2015.
  • Laishram S, Moirangthem DS, Borah JC, Pal BC, Suman P, et al.: Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the induction of cell cycle arrest and caspase-dependent apoptosis. Life Sci 143, 105–113, 2015.
  • Lv Z-D, Liu X-P, Zhao W-J, Dong Q, Li F-N, et al.: Curcumin induces apoptosis in breast cancer cells and inhibits tumor growth in vitro and in vivo. Int J Clin Exp Pathol 7, 2818, 2014.
  • Xu Y, Tong Y, Ying J, Lei Z, Wan L, et al.: Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett 15, 9117–9125, 2018.
  • Samarghandian S, Azimi Nezhad M, and Mohammadi G: Role of caspases, Bax and Bcl-2 in chrysin-induced apoptosis in the A549 human lung adenocarcinoma epithelial cells. Anticancer Agents Med Chem 14, 901–909, 2014.
  • Samarghandian S, Afshari JT, and Davoodi S: Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics (Sao Paulo) 66, 1073–1079, 2011.
  • Tavakoli F, Jahanban-Esfahlan R, Seidi K, Jabbari M, Behzadi R, et al.: Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif Cells Nanomed Biotechnol 46, 75–86, 2018.
  • Srivastava SK, Arora S, Averett C, Singh S, and Singh AP: Modulation of microRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. BioMed Res Int 2015, 848710, 2015.
  • Zhao S-F, Zhang X, Zhang X-J, Shi X-Q, Yu Z-J, et al.: Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev 15, 3363–3368, 2014.
  • Zhang J, Zhang T, Ti X, Shi J, Wu C, et al.: Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway. Biochem Biophys Res Commun 399, 1–6, 2010.
  • Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, et al.: miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and-2. Mol Oncol 8, 581–595, 2014.
  • Saini S, Arora S, Majid S, Shahryari V, Chen Y, et al.: Curcumin modulates MicroRNA-203–mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev Res 4, 1698–1709, 2011.
  • Ling H, Fabbri M, and Calin GA: MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12, 847, 2013.
  • Roy S, Levi E, Majumdar AP, and Sarkar FH: Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol 5, 58, 2012.
  • Li X, Xie W, Xie C, Huang C, Zhu J, et al.: Curcumin modulates miR-19/PTEN/AKT/p53 axis to suppress bisphenol A-induced MCF-7 breast cancer cell proliferation. Phytother Res 28, 1553–1560, 2014.
  • Mohammadian F, Pilehvar-Soltanahmadi Y, Mofarrah M, Dastani-Habashi M, and Zarghami N: Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif Cells Nanomed Biotechnol 44, 1972–1978, 2016.
  • Mohammadian F, Abhari A, Dariushnejad H, Nikanfar A, Pilehvar-Soltanahmadi Y, et al.: Effects of chrysin-PLGA-PEG nanoparticles on proliferation and gene expression of miRNAs in gastric cancer cell line. Iran J Cancer Prev 9, e4190, 2016.
  • Mohammadian F, Abhari A, Dariushnejad H, Zarghami F, Nikanfar A, et al.: Upregulation of Mir-34a in AGS gastric cancer cells by a PLGA-PEG-PLGA chrysin nano formulation. Asian Pac J Cancer Prev 16, 8259–8263, 2016.
  • Tahiri A, Leivonen S-K, Lüders T, Steinfeld I, Ragle Aure M, et al.: Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis 35, 76–85, 2014.
  • Zhang Z-G, Chen W-X, Wu Y-H, Liang H-F, and Zhang B-X: MiR-132 prohibits proliferation, invasion, migration, and metastasis in breast cancer by targeting HN1. Biochem Biophys Res Commun 454, 109–114, 2014.
  • Keklikoglou I, Koerner C, Schmidt C, Zhang J, Heckmann D, et al.: MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31, 4150, 2012.
  • Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, et al.: Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma . Nature 462, 104, 2009.
  • Singh S, Shi Q, Bailey ST, Palczewski MJ, Pardee AB, et al.: Nuclear factor-κB activation: a molecular therapeutic target for estrogen receptor–negative and epidermal growth factor receptor family receptor–positive human breast cancer. Mol Cancer Ther 6, 1973–1982, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.