380
Views
21
CrossRef citations to date
0
Altmetric
Articles

Moisture and temperature degradation of double cantilever beam adhesive joints

, , ORCID Icon & ORCID Icon
Pages 1824-1838 | Received 09 Nov 2016, Accepted 12 Jan 2017, Published online: 31 Jan 2017
 

Abstract

In this work, the double cantilever beam (DCB) test is analysed in order to evaluate the combined effect of temperature and moisture on the mode I fracture toughness of adhesives used in the automotive industry. Very few studies focus on the combined effect of temperature and moisture on the mechanical behaviour of adhesive joints. To the authors’ knowledge, the simultaneous effect of these conditions on the fracture toughness of adhesive joints has never been determined. Specimens using two different adhesives for the automotive industry were subjected to two different ageing environments (immersion in distilled water and under 75% of relative humidity). Once they were fully degraded, they were tested at three different temperatures (−40, 23 and 80 °C), which covers the range of temperature an adhesive for the automotive industry is required to withstand. The aim is to improve the long term mechanical behaviour prediction of adhesive joints. The DCB substrates were made of a high strength aluminium alloy to avoid plastic deformation during test. The substrates received a phosphoric acid anodisation to improve their long term adhesion to the adhesive. Results show that even though a phosphoric acid anodization was applied to the adherends, when the aged specimens were tested at room temperature and at 80 °C, they suffered interfacial rupture. At −40 °C, however, cohesive rupture was observed and the fracture toughness of the aged specimens was higher.

Acknowledgements

The authors would like to thank Sika for supplying SikaPower 4720 adhesive and Nagase Chemtex for supplying XNR 6852-1 adhesive.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.