261
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation on phosphate adsorption, mechanism and desorption properties of Mn-Zn-Ti oxide trimetal alloy nanocomposite

, , &
Pages 1635-1643 | Received 23 Jan 2018, Accepted 24 Mar 2018, Published online: 25 Apr 2018
 

ABSTRACT

Recently composite metal oxides have gained significant attention to be used as adsorbent because of their synergetic effects. Particularly Manganese containing composite oxides are useful for removal of inorganic oxyacids such as phosphate or arsenate. In present study fabrication of Mn-Zn-Ti Oxide adsorbent for phosphate removal carried out via co precipitation method. Surface properties deduced by TEM, FESEM, EDAX and XRD, revealed nanosized composite material has a porous nature constitute of alloy type mixing of the metals. Size of the nanocomposite found to be as small as 6 nm. Adsorption capacity for phosphate estimated at different pH, time and adsorbent dose by batch mode. In addition desorption properties and thermodynamic study also carried out. Several isotherms and kinetic models applied to observe adsorption properties of the Mn-Zn-Ti Oxide nanocomposite. Adsorption capacity found to be 151 mg/g at pH 6, time 90 min, adsorbent dose 0.20 g/L and phosphate concentration of 200 mg/L. Adsorption data fitted to second order kinetics and Freundlich isotherm. Formation of complex between nanocomposite and phosphate predicted from FTIR and supported by pH kinetic and isotherm studies. Desorption and reusability found to be well maintained over five cycles.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.