261
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Experimental investigation on phosphate adsorption, mechanism and desorption properties of Mn-Zn-Ti oxide trimetal alloy nanocomposite

, , &
Pages 1635-1643 | Received 23 Jan 2018, Accepted 24 Mar 2018, Published online: 25 Apr 2018

References

  • Fegade, U.; ⁠Jethave, G.; Su, K.; Huang, W.; Wu, R. An Multifunction Zn⁠0.3Mn⁠0.4O⁠4 Nanospheres for Carbon Dioxide Reduction to Methane via Photocatalysis and Reused After Fifth Cycles for Phosphate Adsorption. J. Environ. Chem. Eng. 2018, 6(2), 1918–1925. DOI: 10.1016/j.jece.2018.02.040.
  • Lu, J.; Liu, H.; Zhao, X.; Jefferson, W.; Cheng, F.; Qu, J. Phosphate Removal from Water using Freshly Formed Fe–Mn Binary Oxide: Adsorption Behaviors and Mechanisms. Colloids Surf. A 2014, 455, 11–18. DOI: 10.1016/j.colsurfa.2014.04.034.
  • Wang, Z.; Nie, E.; Li, J.; Yang, M.; Zhao, Y.; Luo, X.; Zheng, Z. Equilibrium and Kinetics of Adsorption of Phosphate onto Iron-Doped Activated Carbon. Environ. Sci. Pollut. Res. 2012, 19, 2908–2917. DOI: 10.1007/s11356-012-0799-y.
  • Chen, L.; Zhao, X.; Pan, B.; Zhang, W.; Hua, M.; Lv, L.; Zhang, W. Preferable Removal of Phosphate from Water using Hydrous Zirconium Oxide-Based Nano-Composite of High Stability. J. Hazard. Mater. 2015, 284, 35–42. DOI: 10.1016/j.jhazmat.2014.10.048.
  • Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Yang, C.; Wang, Y.; Zhou, Y.; Cheng, M. Efficacy of Carbonaceous Nanocomposites for Sorbing Ionizable Antibiotic Sulfamethazine from Aqueous Solution. Water. Res. 2016, 95, 103–112. DOI: 10.1016/j.watres.2016.03.014.
  • Liu, T.; Wu, K.; Zeng, L. Removal of Phosphorus by A Composite Metal Oxide Adsorbent Derived from Manganese Ore Tailings. J. Hazard. Mater. 2012, 217, 29–35. DOI: 10.1016/j.jhazmat.2012.01.019.
  • Long, F.; Gong, J.-L.; Zeng, G.-M.; Chen, L.; Wang, X.-Y.; Deng, J.-H.; Niu, Q.-Y.; Zhang, H.-Y.; Zhang, X.-R. Removal of Phosphate from Aqueous Solution by Magnetic Fe–Zr Binary Oxide. Chem. Eng. J. 2011, 171, 448–455. DOI: 10.1016/j.cej.2011.03.102.
  • Boyer, T.-H.; Persaud, A.; Banerjee, P.; Palomino, P. Comparison of Low-Cost and Engineered Materials for Phosphorus Removal from Organic-Rich Surface Water. Water Res. 2011, 45, 4803–4814. DOI: 10.1016/j.watres.2011.06.020.
  • Chen, Y.; Sun, Z.; Ye, W.; Cui, Y. Adsorptive Removal of Eu (III) from Simulated Groundwater by GMZ Bentonite on the Repository Conditions. J. Radioanal. Nucl. Chem. 2017, 311, 1839–1847. DOI: 10.1007/s10967-017-5173-6.
  • He, Y.; Chen, Y.; Ye, W. Equilibrium, Kinetic, and Thermodynamic Studies of Adsorption of Sr (II) from Aqueous Solution onto GMZ Bentonite. Environ. Earth Sci. 2016, 75, 807–816. DOI: 10.1007/s12665-016-5637-y.
  • Chen, Y.; Zhu, B.; Wu, D.; Wang, Q.; Ye, W.; Guo, J. Eu (III) Adsorption using di (2-thylhexyl) Phosphoric Acid-Immobilized Magnetic GMZ Bentonite. Chem. Eng. J. 2012, 181–182, 387–396. DOI: 10.1016/j.cec.2011.11.100.
  • Wu, D.; Zhu, C.; Chen, Y.; Zhu, B.; Yang, Y.; Wang, Q.; Ye, W. Preparation, Characterization and Adsorptive Study of Rare Earth Ions using Magnetic GMZ Bentonite. Appl. Clay Sci. 2012, 62–63, 87–93. DOI: 10.1016/j.clay.2012.04.015.
  • Gupta, K.; Ghosh, U.-C. Arsenic Removal using Hydrous Nanostructure Iron (III) Titanium (IV) Binary Mixed Oxide from Aqueous Solution J. Hazard. Mater. 2009, 161, 884–892. DOI: 10.1016/j.jhazmat.2008.04.034.
  • Biswas, K.; Gupta, K.; Goswami, A.; Ghosh, U.-C. Fluoride Removal Efficiency from Aqueous Solution by Synthetic Iron (III) – Aluminum (III) – Chromium (III) Ternary Mixed Oxide. Desalination 2010, 255, 44–51. DOI: 10.1016/j.desal.2010.01.019.
  • Deng, S.-B.; Liu, H.; Zhou, W.; Huang, J.; Yu, G. Mn–Ce Oxide as a High-Capacity Adsorbent for Fluoride Removal from Water. J. Hazard. Mater. 2011, 186, 1360–1366. DOI: 10.1016/j.jhazmat.2010.12.024.
  • Liu, R.; Tian, Y.; Xu, J.; Fu, H.; Li, Y. Efficient Removal of Congo Red by Magnetic CoFe2O4 Nanoparticles Prepared via the Rapid Combustion Process. J. Nanosci. Nanotechnol. 2016, 16, 9535–9543. DOI: 10.1166/jnn.2016.12077.
  • Liu, R.; Lv, P.; Fu, H.; Lu, R.; Wu, X.; Lu, Y. Removal Performance of Methyl Blue Onto Magnetic MgFe2O4 Nanoparticles Prepared via the Rapid Combustion Process. J. Nanosci. Nanotechnol. 2017, 17, 4755–4762. DOI: 10.1166/jnn.2017.13748.
  • Liu, R.; Fu, H.; Lu, Y.; Yin, H.; Yu, L.; Ma L.; Han, J. Adsorption Optimization and Mechanism of Neutral Red On to Magnetic Ni0.5Zn0.5Fe2O4/SiO2 Nanocomposites. J. Nanosci. Nanotechnol. 2016, 16, 8252–8262. DOI: 10.1166/jnn.2016.11653.
  • Liu, R.; Fu, H.; Yin, H.; Wang, P.; Lu, L.; Tao, Y. A Facile Sol Combustion and Calcinations Process for the Preparation of Magnetic Ni0.5 Zn0.5 Fe2O4 Nanopowders and their Adsorption Behaviors of Congo Red. Powder Technol. 2015, 274, 418–425. DOI: 10.1016/j.powtec.2015.01.045.
  • Cantrell, K.-B.; Hunt, P.-G.; Uchimiya, M.; Novak, J.-M.; Ro, K.-S. Impact of Pyrolysis Temperature and Manure Source on Physicochemical Characteristics of Biochar. Bioresour. Technol. 2012, 107, 419–428. DOI: 10.1016/j.biortech.2011.11.084.
  • Quin, Q.-D.; Wang, Q.-Q.; Fu, D.-F.; Ma, J. An efficient approach for Pb (II) and Cd (II) Removal using Manganese Dioxide formed in Situ. Chem. Eng. J. 2011, 172, 68–74. DOI: 10.1016/j.cej.2011.05.066.
  • Zhang, G.-S.; Liu, H.-J.; Liu, R.-P.; Qu, J.-H. Removal of Phosphate from Water by a Fe–Mn Binary Oxide Adsorbent. J. Colloid Interface Sci. 2009, 335, 168–174. DOI: 10.1016/j.jcis.2009.03.019.
  • Jethave, G.; Fegade, U.; Attarde, S.; Ingle, S. Facile Synthesis of Lead Doped Zinc-Aluminum Oxide Nanoparticles (LD-ZAO-NPs) for Efficient Adsorption of Anionic Dye: Kinetic, Isotherm and Thermodynamic Behaviors. J. Ind. Eng. Chem. 2017, 53, 294–306. DOI: 10.1016/j.jiec.2017.04.038.
  • Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Selective Adsorption of Phosphate from Seawater and Waste Water by Amorphous Zirconium Hydroxide. J. Colloid Interface Sci. 2006, 297, 426–433. DOI: 10.1016/j.jcis.2005.11.011.
  • Zong, E.; Wei, D.; Wan, H.; Zheng, S.; Xu, Z.; Zhu, D. Adsorptive Removal of Phosphate Ions from Aqueous Solution using Zirconia-Functionalized Graphite Oxide. Chem. Eng. J. 2013, 221, 193–203. DOI: 10.1016/j.cej.2013.01.088.
  • Radnia, H.; Ghoreyshi, A.-A.; Younesi, H. Isotherm and Kinetics of Fe (II) Adsorption onto Chitosan in a Batch Process. Iran. J. Energy Environ. 2011, 2, 250–257. DOI: 10.5829/idosi.ijee.2011.02.03.
  • Weber, W., Morris, J. Kinetics of Adsorption on Carbon from Solution. Am. Soc. Civ. Eng. 1963, 89, 31–60.
  • Jung, K.-W.; Jeong, T.-U.; Hwang, M.-J.; Kim, K.; Ahn, K.-H. Phosphate Adsorption Ability of Biochar/Mg-Al Assembled Nanocomposites Prepared by Aluminium-Electrode Based Electro – Assisted Modification Method with MgCl2 as Electrolyte. Bioresour. Technol. 2015, 198, 603–610. DOI: 10.1016/j.biortech.2015.09.068.
  • Langmuir, I.The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Freundlich, H.; Heller, W. The Adsorption of cis- and trans-Azobenzene. J. Am. Chem. Soc. 1939, 61, 2228–2230. DOI: 10.1021/ja01877a071.
  • Temkin, M.-J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. Acta Physiochim. URSS 1940, 12, 217–222.
  • Dubinin, M.-M.; Radushkevich, L.-V. Equation of the Characteristic Curve of Activated Charcoal. Chem. Zent. 1947, 1, 875–889.
  • Ogata, F.; Imai, D.; Toda, M.; Otani, M.; Kawasaki, N. Adsorption of Phosphate Ion in Aqueous Solutions by Calcined Cobalt Hydroxide at Different Temperatures. J. Environ. Chem. Eng. 2015, 3, 1570–1577. DOI: 10.1016/j.jece.2015.05.028.
  • Ren, Z.-M.; Shao, L.-N.; Zhang, G.-S. Adsorption of Phosphate from Aqueous Solution using an Iron–Zirconium Binary Oxide Sorbent. Water, Air, Soil Pollut. 2012, 223, 4221–4231. DOI: 10.1007/s11270-012-1186-5.
  • Lu, J.-B.; Liu, H.-J.; Liu, R.-P.; Zhao, X.; Sun, L.-P.; Qu, J.-H. Adsorptive Removal of Phosphate by a Nanostructured Fe–Al–Mn Trimetal Oxide Adsorbent. Powder Technol. 2013, 233, 146–154. DOI: 10.1016/j.powtec.2012.08.024.
  • Xiong, W.; Tong, J.; Yang, Z.; Zeng, G.; Zhou, Y.; Wang, D.; Song, P.; Xu, R.; Zhang, C.; Cheng, M. Adsorption of Phosphate from Aqueous Solution using Iron-Zirconium Modified Activated Carbon Nanofiber: Performance and Mechanism. J. Colloid Interface Sci. 2017, 493, 17–23. DOI: 10.1016/j.jcis.2017.01.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.