290
Views
4
CrossRef citations to date
0
Altmetric
Articles

A comparison of anionic and cationic dye removal efficiency of industrial bauxite waste red-mud

, , &
Pages 144-156 | Received 28 Jan 2021, Accepted 04 May 2021, Published online: 06 Jun 2021
 

Abstract

Sorption characteristics of the acid-activated bauxite waste red-mud for Nylomine-Blue and Methylene-Blue were investigated to predict its potential removal ability for anionic-di-anthraquinone and cationic-thiazine-dyes, respectively. Surface characteristics of the red-mud were examined using atomic-force-microscopy, diffuse-reflectance-Fourier-transform, and X-ray-diffraction spectroscopy techniques. Kinetic data obtained at four different temperatures fit well to the pseudo-second-order and homogeneous-surface-diffusion models. The experimental Nylomine-Blue sorption capacity (0.020 mmol/g) is higher than that of Methylene-Blue (0.012 mmol/g) at 288 K but they change oppositely with the temperature and attain 0.013 and 0.043 mmol/g at 318 K, respectively. Experimental equilibrium data for Methylene-Blue and Nylomine-Blue are well predicted by the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm equations. The mean-sorption-energies fall into the ion-exchange range for Methylene-Blue but electrostatic-attraction-forces play a more important role in Nylomine-Blue sorption. These mechanisms were correlated to the pH changes in the sorption process and the differences in the diffuse-reflectance-Fourier-transform spectra of dye-loaded sorbents. The atomic-force-microscopy topography and phase images revealed that the hematite and sodalite appear as hills on the red-mud surface but gibbsite and calcite minerals cover the valleys. The Methylene-Blue molecules are sorbed by ion-exchange in the positively-charged-valleys in dilute solutions but Nylomine-Blue is sorbed specifically on overall surface in whole concentration range.

Graphical Abstract

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.